

Authorization and Authentication in gLite

Stefano Dal Pra (INFN)

CYCLOPS Second Training Workshop, Chania 05 – 07 May 2008 Thanks to Emidio Giorgio (INFN Catania), D. Cesini (INFN CNAF) V. Ciaschini (INFN CNAF) et. al.

- Glossary
- Encryption
 - Symmetric algorithms
 - Asymmetric algorithms: PKI
- Certificates
 - Digital Signatures
 - Certification Authorities
 - X509 certificates

Grid security

- Basic concepts
 - Grid Security Infrastructure
 - Proxy certificates
 - single sign-on
 - delegation

Glossary

Principal

•An entity: an user, a program, or a machine

Credentials

•Set of data identitying a principal

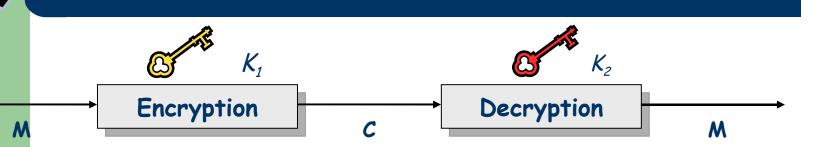
Authentication

Identity verification of a principal

Authorization

•Granting a set of privileges to an Principal

Confidentiality

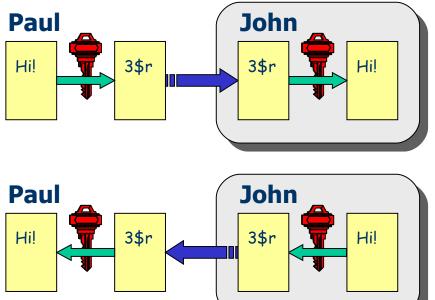

 Ensuring that a clear message is receivable only to a given Principal Integrity

•Ensuring that a received message has not been altered.

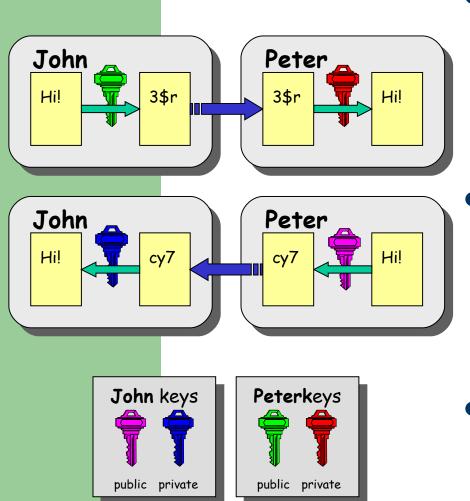
Non-repudiation

•Impossibility of denying the authenticity of a digital signature

Cryptography (symmetric or asymmetric)


- A mathematical algorithm provides important functions for the implementation of a security infrastructure
- Symbology
 - Plaintext: M
 - Cyphertext: C
 - Encryption with key $K_1 : E_{\kappa_1}(M) = C$
 - Decryption with key K_2 : $D_{K_2}(C) = M$
- Algorithms
 - Symmetric: $K_1 = K_2$
 - Asymmetric: $K_1 \neq K_2$

CYCLOPS



Symmetric Algorithms

- The **same** key is used for encryption and decryption
- Advantages:
 - Fast
- Disadvantages:
 - Keys distribution
 - keys number O(n²)
- Examples:
 - DES
 - 3DES
 - Rijndael (AES)
 - Blowfish

Asymmetric Algorithms (RSA)

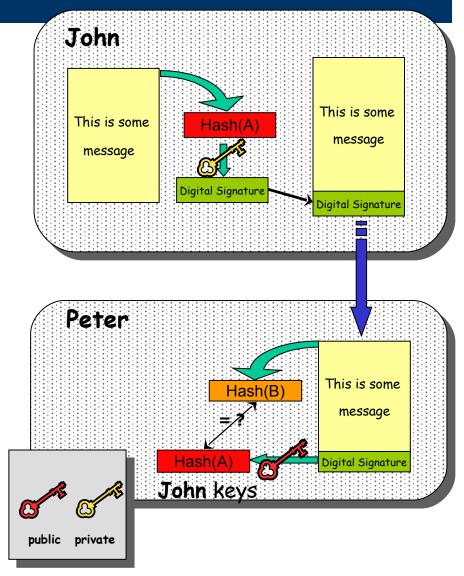
CYCLOPS

- Each user owns two keys: a private and a public one:
 - it is *impossible* to calculate a private key with the public one;
 - a message encrypted by a key is **only** decryptable by the other one.
 - No exchange of private key is needed.
 - the sender cyphers with the *public* key of the receiver;
 - the receiver decrypts using his own *private* key;
 - the number of keys is O(n).
- Slower than symmetric alg.
 - Idea: use RSA to safely exchange simmetric key, then use it.

One-Way Hash Functions

- A hash function transform an arbitrary message (file) in a nontrivial fixed length string.
- *H*(*M*) = *h* **must be easy** (fast) to compute
- $M = H^{-1}(h)$ must be difficult to compute
- given *M*, it **must be difficult** to find *M*' such that H(M) = H(M')
- Examples:
 - MD4/MD5: hash of 128 bits;
 - **SHA** (Standard FIPS): hash of 160 bits.

Example (md5sum)


[user@host]\$ cat mytest testo di prova [user@host]\$ md5sum mytest 909adc30dcc15239ac640b52d33a12b2 mytest [user@host]\$ cat mytest2 testo di prova [user@host]\$ md5sum mytest2 c89ee15b2f056edfbef2dcb62b2249aa mytest2 [user@host]\$ Is -I /bin/Is -rwxr-xr-x 1 root root 67700 Dec 9 2005 /bin/ls [user@host]\$ md5sum /bin/ls 2636c546ce5ca69687f5dfc74cc3175e /bin/ls

Useful to check files equality!!

Digital Signature

- John calculates the hash of the message (with a one-way hash function)
- John encrypts the hash using his private key: the encrypted hash is the <u>digital signature</u>.
- John sends the signed message to Peter.
- Peter calculates the hash of the message and <u>verifies</u> it with A, decyphered with Peter's public key.
- If two hashes equal: message wasn't modified; John cannot repudiate it.

Digital Certificate

• John's digital signature is safe if:

- 1. John's private key is not compromised
- 2. Peter knows and trust John's public key
- How can Peter be sure that John's public key is really John's public key and not someone else's?
 - A *third party* guarantees the correspondence between public key and owner's identity.
 - Both John and Peter must trust this third party
- Two models proposed to build trust:
 - X.509: hierarchical organization (used in Grid)
 - PGP: "web of trust". (person to person)

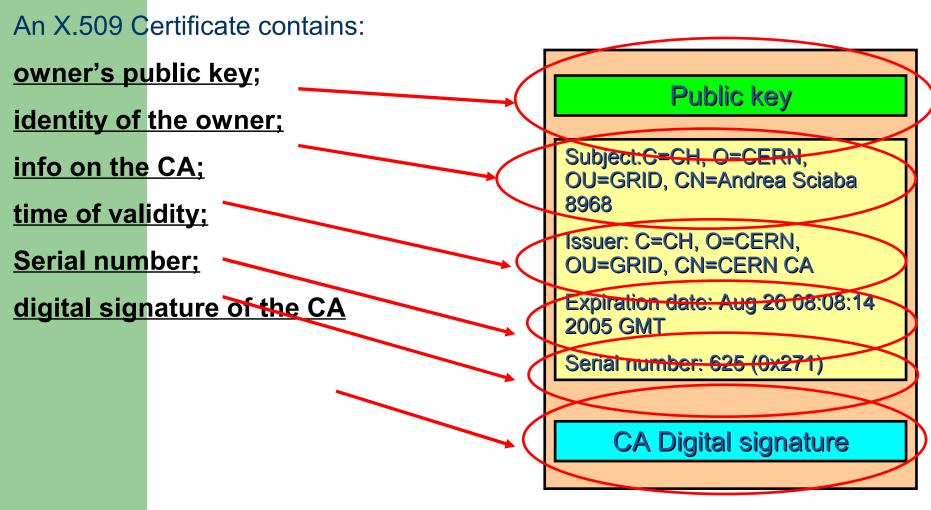
509 and Certification Authorities

The "third party" is called <u>Certification Authority</u> (CA).

The CA is responsible of:

CYCLOPS

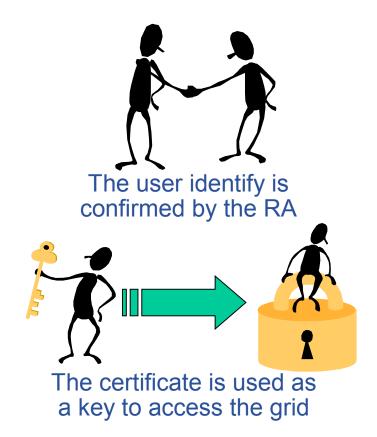
- Issue Digital Certificates (containing public key and owner's identity) for users, programs and machines
- Check identity and the personal data of the requestor
 - Registration Authorities (RAs) do the actual validation
- Revoke certificates in case of a compromise
- **Renew c**ertificates in case of expiration
- Periodically publish a list of revoked certificates through web repository
 - **Certificate Revocation Lists** (CRL): contain all the revoked certificates
- CA certificates are self-signed



Revocation Lists

- The CAs have the obligation of issue Certificate Revocation Lists (CRL)
- The CRLs contain:
 - a list of the revoked certificates
 - the date when they were issued
 - the end date
- CRLs are signed with the CA private key
- The CRLs must be published so that the relying parties can check the validity of the certificates
 - Usually available through a web page

X.509 Certificate



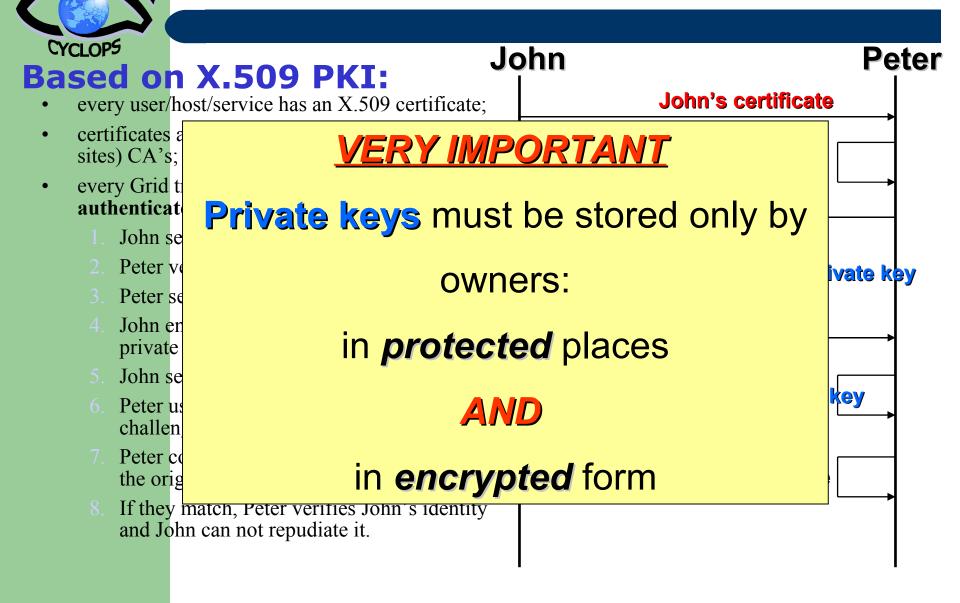
Obtaining a certificate

• How to obtain a certificate:

GRID Security: Components

Users

Large and dynamic population
Different accounts at different sites
Personal and confidential data
Heterogeneous privileges (roles)
Desire Single Sign-On


"Groups"

- "Group" data
- Access Patterns
- Membership

- Sites
- Heterogeneous Resources
- Access Patterns
- Local policies
- Membership

Grid

The Grid Security Infrastructure (GSI)

Certificate management

• Import your certificate in your browser

- If you receive a .pem certificate you need to convert it to PKCS12
- Use openssl command line (available in each egee/LCG UI)
 - openssl pkcs12 -export -in usercert.pem -inkey userkey.pem -out my_cert.p12 -name 'My Name'

• **GILDA (and other VOs):**

- If you receive already a PKCS12 certificate, you can import it directly into the web browser.
- For future use, you will need *usercert.pem* and *userkey.pem* in a directory ~/.globus on your UI
- Export the PKCS12 cert to a local dir on UI and use again openssl:
 - openssl pkcs12 -nocerts -in my_cert.p12 -out userkey.pem
 - openssl pkcs12 -clcerts -nokeys -in my_cert.p12 -out usercert.pem

X.509 Proxy Certificate

- Proxy: GSI extension to X.509 Identity Certificates
 - signed by the normal end entity cert (or by another proxy).
- It enables single sign-on.
- It supports some important features:
 - Delegation
 - Mutual authentication
- It has a limited lifetime (minimized risk of "compromised credentials")
- It is created by the voms-proxy-init command: % voms-proxy-init
 Enter PEM pass phrase: *****
 - Options for grid-proxy-init:
 - -hours <lifetime of credential>
 - -bits <length of key>
 - -help

GSI environment variables

- User certificate files:
 - Certificate: X509_USER_CERT
 (default: \$HOME/.globus/usercert.pem)
 - Private key: X509_USER_KEY
 (default: \$HOME/.globus/userkey.pem)
 - Proxy: X509_USER_PROXY
 (default: /tmp/x509up_u<id>)
- Host certificate files:
 - Certificate: X509_HOST_CERT
 (default: /etc/grid-security/hostcert.pem)
 - Private key: X509_HOST_KEY
 (default: /etc/grid-security/hostkey.pem)

GSI environment variables

Trusted certification authority certificates:

 X509_CERT_DIR
 (default: /etc/grid-security/certificates)

- Voms server public keys
 - X509_VOMS_DIR
 (default: /etc/grid-security/vomsdir)

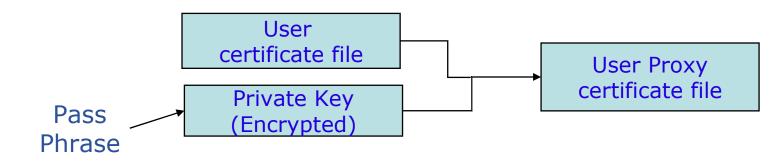
Certificate Management

- Import your certificate in your browser
 - If you received a .pem certificate you need to convert it to PKCS12
 - Use openssl command line (available in each UI)
 openssl pkcs12 -export -in usercert.pem -inkey userkey.pem out my_cert.p12 -name 'My Name'
- Most of other CA's:
 - You receive already a PKCS12 certificate (can import it directly into the web browser)
 - For future use, you will need usercert.pem and userkey.pem in a directory ~/.globus on your UI
 - Export the PKCS12 cert to a local dir on UI and use again openssl: openssl pkcs12 -nocerts -in my_cert.p12 -out userkey.pem openssl pkcs12 -clcerts -nokeys -in my_cert.p12 -out usercert.pem

X.509 Proxy

- GSI extension to X.509 Identity Certificates
 - signed by the normal end entity cert (or by another proxy).
- Enables single sign-on and support important features:
 - Delegation, Mutual authentication
- Has a limited lifetime (minimized risk of "compromised credentials")
- It is created by the voms-proxy-init command:
 - > voms-proxy-init --vo cyclops
 - Enter pass phrase: ******
- Options for voms-proxy-init:

 hours <lifetime of credential>
 bits <length of key>
 - -help



How Proxies are created

User enters pass phrase, used to decrypt private key.

Private key is used to sign a proxy certificate with <u>its own</u>, new public/private key pair.

User's private key not exposed after proxy has been signed

Proxy

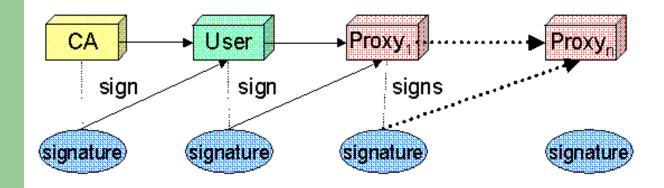
its private key is *not encrypted* and stored in local file: must
 be readable **only** by the owner

- its lifetime is short (typically 12 h) to minimize security risks.

Managing Proxies

- voms-proxy-init ≡ "login to the Grid"
- To "logout" you have to destroy your proxy:
 voms-proxy-destroy
- To gather information about your proxy:
 - voms-proxy-info --all
 - Options for printing proxy information
 - -subject -issuer
 - -type -timeleft
 - -strength -help

Delegation


Delegation = remote creation of a (second level) proxy credential

New key pair generated remotely on server

Client signs proxy cert and returns it

Allows remote process to authenticate on behalf of the user

Remote process "impersonates" the user

VOMS Concepts

- Each Grid User **MUST** belong to a "Virtual Organization"
- VOMS offers Virtual Organization Membership Service
 - Extends the proxy with info on VO membership, group, roles
 - Fully compatible with Globus Toolkit
 - Each VO has a database containing group membership, roles and capabilities informations for each user
 - User contacts voms server requesting his authorization info
 - Server send authorization info to the client, which includes them in a proxy certificate

Voms-proxy-init

- [sdalpra@cyclops-01 ~]\$ voms-proxy-init --voms cyclops -hours 72
- Enter GRID pass phrase:
- Your identity: /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Stefano Dal Pra
- Creating temporary proxy Done
- Contacting voms-02.pd.infn.it:15011
 - [/C=IT/O=INFN/OU=Host/L=Padova/CN=voms-02.pd.infn.it] "cyclops" Done
- Creating proxy Done
- Your proxy is valid until Thu May 8 10:10:19 2008
- voms-proxy-init -voms cyclops:/cyclops/Role=SoftwareManager
 - To enable a proxy with "Software Manager" role enabled

- Server creates and sign an AC containing the FQAN (Fully Qualified Attribute Name)
 requested by the user
- If applicable, the AC is included by the client in a welldefined, non critical, extension in a compatible manner

voms-proxy-info

```
[sdalpra@cyclops-01 ~]$ voms-proxy-info -all
```

```
subject : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Stefano Dal Pra/CN=proxy
```

```
issuer : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Stefano Dal Pra
```

```
identity : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Stefano Dal Pra
```

```
type : proxy
```

```
strength : 512 bits
```

```
path :/tmp/x509up_u501
```

```
timeleft : 11:59:42
```

```
=== VO cyclops extension information ===
```

VO : cyclops

```
subject : /C=IT/O=INFN/OU=Personal Certificate/L=Padova/CN=Stefano Dal Pra
```

```
issuer : /C=IT/O=INFN/OU=Host/L=CNAF/CN=voms2.cnaf.infn.it
```

```
attribute : /cyclops/Role=SoftwareManager/Capability=NULL
```

```
attribute : /cyclops/Role=NULL/Capability=NULL
```

```
timeleft : 11:59:42
```

05/05/08

To change: View -> Header and Fc

Groups

- The number of users of a VO can be very high:
 - e.g.: the experiment ATLAS has 2000 member
- Make VO manageable by organizing users in groups: Examples:
 - VO GILDA
 - Group Catania
 - INFN
 - Group Barbera
 - University
 - Group Padua
 - VO GILDA
 - /GILDA/TUTORS
 - /GILDA/STUDENT

can write to normal storage

- only write to volatile space
- Groups can have a hierarchical structure, indefinitely deep

05/05/08

To change: View -> Header and Fc

Roles

- Roles are specific roles a user has and that distinguishes him from others in his group:
 - Software manager
 - VO-Administrator
- Difference between roles and groups:
 - Roles have no hierarchical structure there is no sub-role
 - Roles are not used in 'normal operation'
 - They are not added to the proxy by default when running voms-proxy-init
 - But they can be added to the proxy for special purposes when running voms-proxy-init

Group and roles example

• Example:

- User Emidio has the following membership
- VO=gilda, Group=tutors,
 Role=SoftwareManager
- During normal operation the role is not taken into account (Emidio works as a normal user)
- For special tasks he can obtain the role
 "Software Manager" that he has to explicitly request with the appropriate option.

LCAS and LCMAPS

- At resource level, authorization info are extracted from the proxy and processed by *LCAS* and *LCMAPS*
- Local Centre Authorization Service (LCAS)
 Checks if the user is authorized (currently using the grid-mapfile)
 Checks if the user is banned at the site
 Checks if at that time the site accepts jobs
- Local Credential Mapping Service (LCMAPS) Maps grid credentials to local credentials (eg. UNIX uid/gid, AFS tokens, VOMS group and roles)

"NO=cms/GROUP=/cms" .cms
"NO=cms/GROUP=/cms/prod" .cmsprod
"NO=cms/GROUP=/cms/prod/ROLE=manager" .cmsprodman

References

- Cookbook
 - Quick introduction for cyclops user (Cyclops Deliverable 7)
 - http://www.cyclops-project.eu/
 - Follow "Results Documentation"
 - Pick "D07-Cyclops-EGEE_Cookbook.pdf" file
- VOMS

http://proj-lcg-security.web.cern.ch/proj-lcg-security/

- CA http://proj-lcg-security.web.cern.ch/proj-lcg-security/
- PI2S2 Wiki Authentication and Authorization
 https://grid.ct.infn.it/twiki/bin/view/PI2S2/AuthenticationAuthorization
- PI2S2 Wiki How To Import Certificate In A Web Browser https://grid.ct.infn.it/twiki/bin/view/PI2S2/HowToImportCertificateInAWebBrowser

05/05/08