
Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

Adjusting the fairshare policy to prevent
computing power loss

Stefano Dal Pra

INFN–T1
stefano.dalpra@cnaf.infn.it

CHEP 2016, October xth

I N N

1 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N INFN–T1 Farm

1 Unused slots and dynamic priority

2 Job turnover estimation

3 fairshare

4 issues

5 Shareadjust Implementation

6 Results

2 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Introduction

INFN–T1
main WLCG computing centre in Italy
serving the 4 LHC and ∼ 25 minor experiments
∼ 1000 physical WN, ∼ 21500 computing slots
IBM / Platform LSF 9.1.3 Batch system

Usage
Grid and local users in HEP and other physics communities
There are always pending jobs (no spare time)
Several different (competing) requirements and workloads
Quite large cluster, tuning and optimization matters.

3 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Reasons to investigate short jobs

Short jobs and Unusable cputime
Let w be turnover time between consecutive jobs on a
computing slot.
During this time the slot is unusable
The number N of such timelapses over a time window T
yields the average number of unusable slots:

U =
1
T

N∑
n=1

wn

U grows with bigger clusters and shorter jobs.
A job is short when WCTj � E[WCT] (mins vs hours)

4 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Estimating w

Investigating the time to fill the only free slot in a WN, whenever
a single–core job ends on a full WN.

slot turnover time w Time to fill latest slot
average on 16 slot WNs

→ 0 < w < 60
→ E[w] w 22sec

average over different WNs
→ 21 < E[w] < 26sec

→ σw w 25sec

5 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N fairshare and short jobs

Dynamic Priority
Each user has a Dynamic Priority. Pending jobs of users
with higher DP are dispatched first.
Prevents job starvation and underutilization of resources.
The user’s DP is continously updated by the fairshare
formula:

Uprio =
Ushare

εCPT + αWCT + β(1 + SLOTS) + γADJUST

Usually, α� ε, ADJUST = 0, Uprio driven by WCT
short jobs contribute negligible CPT and WCT
→ user’s priority does not decrease
→ more jobs of the same user are dispatched at next round

6 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N job submitters, short jobs, flooding

Short job flooding types of short jobs
local jobs running few
seconds to few minutes.
broken jobs, submitted by
unaware user.
empty pilots (Grid users)

submitters
several custom job
submitters.
Popular strategy: keep a
steady number of pending
jobs
risk of short jobs flooding!

7 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Issues with short jobs

Short job flooding Events and actions
8PM, short jobs (∼ 1 sec)
flow begins. Total running
drops by ∼ 2K slots.
10AM, close the user’s
queue.
10:30, open the user’s
queue, ban the user.
11AM, enable
fairshareadjust.

8 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Mitigating the problem

At userland side
Encourage users to perform multiple executions in a single
job submission
provide example submitter scripts to do so

Batch system side
Need to be more robust against short job flooding

Add sleep time on the post exec scripts
→ sleep time accounted to user :(
→ We add our own inefficiency

temporarily inactivate submission from the user’s queue
→ impact on all queue users :(

Customize the fairshare formula to add “missing WCT”

9 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Customize the fairshare formula

Customize ADJUST in the fs formula
add a run time penalty to short jobs
treat short jobs as if running a minimum fixed time.
The DP of the submitter would then decrease accordingly
This would act like a “submission rate limiter”.
Accounting remains unaffected

Adjust factor
The runtime penalty can be added by customizing the
fairshareadjust C function.
It returns the ADJUST value for the fairshare formula
invoked at each scheduling cycle for each known user and
group in the LSF cluster

10 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Implementation

Problems
- The function is invoked very frequently
- Needed data (done jobs per user) are out of scope
- computing values inside the function is not an option.

Solution
- Number of sh jobs per user is retrieved externally by a

python script and updated to a ramdisk filesystem every 3
min.

- fairshareadjust() reads data from ramdisk into a
lookup table and returns the ADJUST value

11 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N algorithm

python: dj_stats.py, at time t
computes Ns(t) and Ts(t) penalty per user/group (holder)
load previous status A(t − 1) from ramdisk, then update:

A(t)← λA(t − 1) + (1− λ)Ts(t) ; λ = 0.9

dump holder : Au(t) map to ramdisk as a C struct lookup
table lkt

fshareadjust(holder), when invoked by LSF
load lookup table lkt from ramdisk
returns A(t) ← bsearch(holder,lkt);

if error or not found, returns 0.0

12 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Effect of fairshare ADJUST (test)

Uprio =
Ushare

εCPT + αWCT + β(1 + SLOTS) + γADJUST

Short job flooding test Test user with high share
High dispatch rate at first

→ Penalty WCT Ts(t) grows
→ ADJUST Au(t) follows
→ subm. rate hardly cope

with disp. rate
User’s dyn. prio. drops

→ dispatch rate stabilizes
→ submission rate reduces
→ Au(t) decays after

submission flow ends

13 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Effect of fairshare ADJUST (Production)

All + 2 sj submitters, 30% of
recently done are short

Sep 30, with ADJUST

All + one sj submitters, 50% of
recently done are short

March 2016, no ADJUST

→ Sep 30: avg(r) > 21K

→ March: avg(r) ∼ 18.5K

14 / 15

Adjusting the
fairshare policy to
prevent computing

power loss

Stefano Dal Pra

Unused slots and
dynamic priority

Job turnover
estimation

fairshare

issues

Shareadjust
Implementation

Results

Summary

I N N Summary

High submission rate of short jobs can significantly
decrease the number of usable computing slots in the
cluster.
The problem can be mitigated by adding a “minimum fixed
runtime” to finished short jobs.
This prevents “black hole” effect and improves the
behaviour of the dynamic priority as implemented by the
fairshare policy.
The implemented solution is specific to LSF, however the
general problem and the adopted strategy should be
generic enouugh to be extensible to other batch systems
too.

15 / 15

	Unused slots and dynamic priority
	Job turnover estimation
	fairshare
	issues
	Shareadjust Implementation
	Results

