
Distributed Tracking, Storage, and Re-use of
Job State Information on the Grid

Daniel Kouřil, Aleš Křenek, Luděk Matyska, Miloš Mulač, Jan Pospíšil, Miroslav Ruda, Zdeněk Salvet, Jiří Sitera, Jiří Škrabal, Michal Voců
CESNET, Zikova 4, Prague, Czech Republic, and Charles, Masaryk and West Bohemia Universities

24th September 2004

The Logging and Bookkeeping service tracks job passing through the Grid. It col-

lects important events generated by both the grid middleware components and ap-

plications, and processes them at a chosen L&B server to provide the job state.

The events are transported through secure reliable channels. Job tracking is fully

distributed and does not depend on a single information source, the robustness is

achieved through speculative job state computation in case of reordered, delayed or

lost events. The state computation is easily adaptable to modified job control flow.

The events are also passed to the related Job Provenance (JP) service. Its purpose

is a long-term storage of information on job execution, environment, and the exe-

cutable and input sandbox files. The data can be used for debugging, post-mortem

analysis, or re-running jobs.

The data are kept by the job-provenance storage service in a compressed format,

accessible on per-job basis. A complementary index service is able to find particular

jobs according to configurable criteria, e.g. submission time or "tags" assigned by

the user.

Both the L&B and JP index server provide web-service interfaces for querying.

Those interfaces comply with the On-demand producer specification of the R-GMA

infrastructure. Hence R-GMA capabilities can be utilized to perform complex dis-

tributed queries across multiple servers. Also, aggregate information about job col-

lections can be easily provided.

The L&B service was deployed in the EU DataGrid and Cern LCG projects, both

L&B and JP will be deployed in the EGEE project.

L&B service

In a Grid environment, use of advanced Grid services like Resource broker implies
lost of direct control over placement of submitted jobs. Security requirements may
prevent direct contact with computing element where job is running.
Additional complexity accompanies parallel and multipart jobs as well as job assem-

blies, where thousand and more tasks may represent one logical job. It is impossible
to track all the jobs manually. However, jobs could get lost and be mistreated and
some monitoring information is neccessary to track and repair the cause of such an
error. While monitoring in general is an on-going activity within the Grid commu-
nity (see, e. g., [1]), there is no such activity specifically focused on job tracking and
monitoring.
The L&B service (see, e. g., [2]) collects events generated as a result of job flowing

through the individual Grid middleware components. It supports distributed WMS ar-
chitecture [3] consisting of various job handling components. The components are
instrumented to generate events when a job passes through them, these events are
sent through the network to an appropriate L&B database. Managing data not di-
rectly accessible otherwise, the L&B provides individual events, a global view on job
states, as well as aggregate information on compound jobs.

User

submit

execute

events

events

Computing Element

job state

state updates
state updates

Workload Management

R-GMA

Logging & Bookkeeping

Main features

• L&B service collects, delivers and stores events de-
scribing the job lifetime

• each job is uniquely identified by its jobid and each
L&B event is assigned to a single grid job

• information are collected using push model (WMS
components actively send information)

• logging of data is asynchronous and independent of
state of other grid services

• all data transfers are encrypted and authenticated us-
ing GSI [4], access is authorized using VOMS [5] and
ACLs [6]

• job state is inferred from the event database, stored
in the L&B databaseand can be queried directly by
the clients, fed into the R-GMA [7, 8] infrastructure or
announced via notifications

• L&B service supports compound jobs in the form
of DAGs (multi–jobs with execution dependencies

among its components, [9]) and provides overall in-
formation as well as detailed information about sub-
jobs

• clients can query the database for individual events
as well as job state

•arbitrary information can be assigned to the job by
means of user tags

• support for offline data mining on event database

Job state

Every job during its lifetime passes through various phases, associated with job
states. Job state is computed from particular events sent by WMS components while
handling the job. In general an event indicates a change in job state. Job states for
the current WMS and recognized by L&B service are defined as follows:

SUBMITTED . . . job is entered by the user to the grid
WAITING . . . job has been accepted and is waiting for further processing and/or

resource discovery
READY . . . job has been assigned to appropriate Computing Element
SCHEDULED. . . job is waiting in the queue on the ComputingElement (this state

never occurs with DAG/partitioned job)
RUNNING . . . job is running or DAGMan is processing its subjobs (if the job is

DAG/partitioned)
DONE . . . job has exited or is considered to be in a terminal state (submission

failed unrecoverably)
ABORTED . . . job processing was aborted by WMS (waiting in the Workload Man-

ager queue or ComputingElement for too long, over-use of quotas,
expiration of user credentials, . . . )

CANCELLED . . . job has been successfully cancelled by user request
CLEARED . . . output sandbox was transferred to the user or removed due to the

timeout

SUBMITTED

WAITING

READY

CLEARED

ABORTEDCANCELLED

DONE(failed)

SCHEDULED

DONE(ok)

RUNNING

1



Architecture

API’s implemented as a simple libraries provide access to the core L&B services:

•Logging (producer) API is used by the event sources to pass information to the
L&B database. It provides locally persistent non-blocking calls regardless of the
state of other L&B components, but their synchronous (blocking) counterparts are
also available.

•Server (consumer) API serves for querying the contents of L&B database (events
and job states).

•Notification API allows clients to register with the L&B database and receive in-
formation about changes in job states.

Transport infrastructure is responsible for reliable, secure and fast transfer of
events over WAN to the L&B database. The local logger daemon accepts mes-
sages sent via logging API, stores them into local file and passes them on to the
interlogger daemon, which tries to deliver the messages to appropriate database
until it succeeds. The separation of functionality between the two processes en-
sures desired properties: reliability and fast response independent of state of other
grid services.

Bookkeeping server stores events delivered from WMS components into local
database, performs on–line computation of job state and informs the subscribed

clients about job state changes using either R-GMA or L&B notification infrastruc-
ture. It also responds to direct user queries about job states and events.

Job Provenance

The purpose: To provide long lived (years) storage for
definition of submitted jobs, execution conditions and
environment, and important points of the job life cy-
cle. Only information on completed jobs (regardless
of their completion status) is provided. Stored data can
be used for debugging, post-mortem analysis, compar-
ison of job execution within an evolving environment,
as well as assisted re-execution of jobs.

It is practically impossible to record the entire job exe-
cution environment—the ideal case would encompass
an entire Grid snapshot. We restrict the recorded data
to those that are processed or somehow affect pro-
cessing of the Workload Management and Computing
Element services. Snapshots of the state of other Grid
services are not done, namely queries to the Data Cat-
alogue and their results are not stored, as well as con-
tents of data files down- and uploaded from and to Stor-
age Elements.

Data required by the JP service are gathered by vari-

ous Grid middleware components, using both the “pull”
and “push” modes.
Job Record is a collection of following parts, contain-
ing all the relevant information about a particular job.
Job life log taken over from the L&B database. It con-

tains the complete definition of the job (in terms of the
submitted JDL), various timestamps, information on
the chosen CE (or more of them, if the job was resub-
mitted), result of execution (including return code, if
possible), the user-defined tags specified either stat-
ically upon job submission, during its execution, or
overridden after the job terminates.

Executable file(s) provided by the user upon submis-
sion. For the sake of storage effectivity, JP has to al-
low sharing a stored executable among multiple jobs.
The executable and input sandbox is managed by the
submission interface of the Workload Management
service, instrumented to cooperate with the JP.

Execution environment consists of information about

operating system and installed software versions,
and specific configuration information (including val-
ues of environment variables) of the particular worker
node where the job has been executed.

The primary source of the most up-to-date informa-
tion of this type is the worker node itself, the script
which wraps invocation of the job executable is being
instrumented to log the required information. How-
ever, certain information can be also retrieved from
CE configuration management service.

Input/output sandbox contains miscellaneous files re-
quired for execution and miscellaneous output (de-
bug logs, core file). Staging the sandboxes in and
out is managed by the Network Server.

Custom data may be provided by the user upon sub-
mission, gathered during job execution (via plugin
script called by the job wrapper), or even after the
job termination, through the interaction with JP itself.

Architecture

Primary storage servers

• keep all the job JP data in the most compact and economic form of Job Record,
use of metadata enables sharing of large files among jobs

• provide public interfaces for storing and retrieval of job records and registration of
index servers

• job record is accessed using jobid (jobid serves as a primary key) or additional
metadata (currently submit time and job owner)

• access control mechanism is based on ACL’s taken from L&B data
•may use different backends for job record storage (embedded gridftp server, SE)
Index servers

• provide a limited data mining capability on the JP data; each index server is config-
ured to support set of queryable attributes (subset of L&B attributes, user tags and
input sandbox filenames), some of them marked as indexed

• provide query interface with approximately the same strength as the L&B server
(query may refer only to queryable attributes and must contain indexed attribute
for performance reasons), server responds with list of jobids and primary storage
server contacts

• receive data from primary servers either as batch of dumped L&B data (for jobs
in given time interval or when queryable attributes change) or incrementally (when
new data arrive to JP storage)

Q

Q

Q

User Interface

Workload Manager

Computing Element

LB server

JP Primary Storage

JP Index JP client

Storage backend

Register

Upload sandbox

 Submit

 Submit
Record tag

Purge
Register

Get job record

Create/Update 
job record

Get job
Subscribe

Query

Update job

bulk file transfer

WS operation

Q reliable transport queue

References

[1] B. Tierney et al: A Grid Monitoring Archi-

tecture. Global Grid Forum Working Draft,
http://www-didc.lbl.gov/GGF-PERF/

GMA-WG//papers/GWD-GP-16-2.pdf

[2] D. Kouřil et al: Logging and Book-

keeping Service for the DataGrid. EU
DataGrid project document, http://

server11.infn.it/workload-grid/docs/

DataGrid-01-TEN-0109-1_0.pdf

[3] G. Avellino et al. The EU DataGrid Workload Man-

agement System: towards the second major re-

lease. Computing in High Energy and Nuclear
Physics (CHEP03), USA, 2003.

[4] I. Foster, C. Kesselman, G. Tsudik and S. Tuecke:
A Security Architecture for Computational Grids.
Proc. 5th ACM Conference on Computer and Com-
munications Security Conference, 1998.

[5] R. Alfieri , R. Cecchini , V. Ciaschini , L. dell Agnello,
A. Frohner, A. Gianoli, K. Lorentey, and F. Spataro:
VOMS, an Authorization System for Virtual Orga-

nizations. 1st European Across Grids Conference,
Santiago de Compostela, 2003

[6] A. McNab: Grid-based access control and user

management for Unix environments, Filesystems,

Web Sites and Virtual Organisations. CHEP 2003,
La Jolla, California, 2003.

[7] A. Cooke at al.: Relational Grid Monitoring Archi-

tecture (R-GMA). Presented at UK e-Science All-
Hands meeting, Nottingham, UK, September 2-4,
2003. https://edms.cern.ch/file/400756/
1/rgma.pdf

[8] A. Křenek, L. Matyska, Z. Salvet, J. Sitera. Efficient

Distribution of Grid Jobs State Data via Monitoring

Infrastructures. Submitted to TNC 2004.

[9] F. Giacomini, F. Prelz, M. Sgaravatto, I. Terekhov,
G. Garzoglio, T. Tannenbaum: Planning on the Grid:

A Status Report. INFN-GRID Project Technical Re-
port, 2002.


