
1 1

Programming ExaScale Systems

Tim Mattson

Parallel Computing Lab

Acknowledgements: I had help on this presentation from
the following people at Intel … Jeff Hammond, Rob van
der Wijngaart, Srinivas Sridharan, and Romain Cledat

Agenda

• Preliminaries:

– Setting the stage for a conversation about Exascale computing.

• Methodologies:

– Benchmarks, dirty hands, and the NIH syndrome.

• The landscape of Exascale runtimes

– Who are we watching?

• Are tasks a productive path?

– Some suggestive but inconclusive results

• The ACR program

– Another spelling of OCR (a task based runtime)

2

Preliminaries: Some definitions

• ExaScale Computer: An ensemble of nodes with aggregate

performance of 1018 operations per second when running a

single exascale application.

• ExaScale Application: An Application composed a vast

number of interacting tasks for which a single invocation scales

to make effective use of the full exaScale System.

• ExaSkeptic: A curmudgeon who questions the sanity of trying

to build an exaScale computer requiring applications with

O(billion) concurrency and a 20 MWatt power budget by 2020.

3

A grid of 1000 petaFLOP computers is not an ExaScale computer.
A parameter sweep problem is not an ExaScale Application.

Cloud

Preliminaries: Concerns of an ExaSkeptic

• Most scientists are still trying to figure out what to do with

PetaScale … why are we so eager for exaScale?.

• Most of our collective energy should be directed towards

mega-PetaScale

–Open Standard programming models (MPI, OpenMP, OpenCL)

– Frameworks that support common patterns … programmers write

apps by plugging mostly serials patches into these frameworks.

• If we build an exaScale machine in 2020 running at 20

MWatts … will it be so bizarre that the techniques utilized

are unlikely to inform what we do in mainstream HPC?

4

But for now … I will suppress my ExaSkeptic mindset
and “drink the cool-aid”.

*Third party names are the property of their owners.

2 pathways to Exascale
Runtime Research

5

Evolutionary
(e.g. MPI+X)

Revolutionary
(e.g. OCR)

Challenges on system architecture at scale

Systemic Exascale Challenges

System Utilization
Managing

Asynchrony
Data movement cost

Load Imbalance Fault Tolerance Scalability

2 pathways to Exascale
Runtime Research

6

Evolutionary
(e.g. MPI+X)

Revolutionary
(e.g. OCR)

Challenges on system architecture at scale

Systemic Exascale Challenges

System Utilization
Managing

Asynchrony
Data movement cost

Load Imbalance Fault Tolerance Scalability

We love MPI+X and believe it can be made to work if
programmers use new features in MPI 3 (or maybe MPI 4).

MPI+X is the “status quo” and is well taken care of … so we
can focus exclusively on revolutionary approaches.

Agenda
• Preliminaries:

– Setting the stage for a conversation about Exascale
computing.

• Methodologies:
– Benchmarks, dirty hands, and the NIH syndrome.

• The landscape of Exascale runtimes
– Who are we watching?

• Are tasks a productive path?
– Some suggestive but inconclusive results

• The ACR program
– Another spelling of OCR (a task based runtime)

 7

How to design a great supercomputer?

• Hardware is only useful to the extent it helps
you solve problems you care about.

• Therefore, you must understand the
application software people will run to guide
hardware design.

8

High Quality Benchmarks are essential for effective
system design.

High Quality Benchmarks are essential for effective
system design.

The number one benchmark in use today!
• MP Linpack and the Top500 list. It’s a lot of fun … provides a far

reaching, historical performance metric.

• Most real applications don’t look anything like MP-Linpack.

The drive to “set records” has led to machines of questionable value.
 Focusing on the wrong benchmark has damaged HPC.

The drive to “set records” has led to machines of questionable value.
 Focusing on the wrong benchmark has damaged HPC.

HPCG: A Better benchmark?

Source: Linear algebra for sparse matrices
from Big Data Analytics, Piotr Luszczek, UT

• HPCG (High Performance Conjugate Gradient) closely
approximates real applications … so it’s a “better” benchmark.

• But as applications continue to evolve (e.g. shift to big data and graph
analytics) maybe HPCG will be just as misleading as MP-Linpack.

The only rational approach to long
term benchmarking?

• Give up … Nobody can confidently predict the
key future workloads. So don’t even try.

11

• Our conjecture …

– experienced application programmers know the
sorts of scalable operations they will depend on.

– Therefore, benchmark those scalable ops … a
machine that gets those ops right will most likely be
good for the apps we will care about in the future.

The Parallel Research Kernels version 1.0

 Dense matrix transpose
 Synchronization: global (collective) and point to point
 Scaled vector addition (Stream triad)*
 Atomic reference counting, both contended and uncontended

(locks/TSX)
 Vector reduction
 Sparse matrix-vector multiplication
 Random access update
 Stencil computation
 Dense matrix-matrix multiplication (~DGEMM)
 Branch (inner-loop conditionals + PC panic)*

12 *embarrassingly parallel

PRK: Low level constructs that capture the essence of what parallel

programmers require from parallel computers.

PRK: Low level constructs that capture the essence of what parallel

programmers require from parallel computers.

But don’t we need real apps?

• Real applications must deal with all the messy
details C.S. researchers try to avoid
– Legacy code

– The ugly “boundary cases”

– Users

• These “messy details” are essential … so they
must be addressed.

• We will find a set of proxy apps to work with and
a small number of full apps … stay tuned.

Our approach

• Drive the research by writing lots of apps/code.

• If you don’t get your “hands dirty” working with
real code, you can be easily fooled by hype.

• Strenuously reject the Not Invented Here
Syndrome:

• Our goal:
– Find the “Franken-runtime” that really works.

• We call this Mary … named after Mary Shelly (or our trusty
admin … Mary McCargar-van Arkel). First there was Ada,
then the great Linda programming language, and now Mary.

Agenda
• Preliminaries:

– Setting the stage for a conversation about Exascale
computing.

• Methodologies:
– Benchmarks, dirty hands, and the NIH syndrome.

• The landscape of Exascale runtimes
– Who are we watching?

• Are tasks a productive path?
– Some suggestive but inconclusive results

• The ACR program
– Another spelling of OCR (a task based runtime)

 15

CHARM++ (Sanjay Kale, UIUC)

• CHARM++ is a message-driven execution model
supporting an actors programming model.

• Based on message driven relocatable objects.
– Objects created one-by-one (explicit tasks) or in groups

(chare-arrays or chare-groups) to express data-parallel
algorithms.

• Charm++ uses over-decomposition with concurrent
schedulers that exploit parallel slackness to keep the
load balanced (and hide latency).

• Relocatable data-block and objects plus local check-
pointing and message logging to support resilience.

http://charm.cs.uiuc.edu/

Global Arrays (PNNL/ANL)

• GA is a global view data model and SPMD execution
model that assumes replicated, static distributed or
dynamic distributed processing.

• GA is built upon flexible RMA and bulk synchronous
data operations and (unfortunately)

• GA encourages the use of shared counters for dynamic
load-balancing. Multiple research efforts show work-
stealing is a superior approach.

• GA template is FORALL(data): Get-Compute-Update.

• GA allows process-ID (procid) agnostic code and
supports resilience through RAID-like data replication.

http://hpc.pnl.gov/globalarrays/

APGAS (asynchronous PGAS)
• Used to describe X10 and Chapel, not

traditional PGAS (UPC, CAF, SHMEM, …).

• Locales/places for locality+hierarchy as in MPI
but not PGAS

• Begin-sync/spawn-finish for asynchronous
tasking

• Violates Mattson’s Law (No New Languages!)

• Assuming magical compiler+runtime, APGAS
surely can do anything!

Honorable Mentions …

• HPX

– A many-tasking runtime system based on
relocatable PGAS objects and a dataflow model,
implemented using asynchronous, remote method
invocation.

• Legion

– event driven task model … similar to OCR.

Agenda
• Preliminaries:

– Setting the stage for a conversation about Exascale
computing.

• Methodologies:
– Benchmarks, dirty hands, and the NIH syndrome.

• The landscape of Exascale runtimes
– Who are we watching?

• Are tasks a productive path?
– Some suggestive but inconclusive results

• The ACR program
– Another spelling of OCR (a task based runtime)

 20

More definitions

• Work: The sequence of operations defined by an execution of a

program.

• Unit of execution (UE): an agent that advances the work defined by an

executing program.

• Data: The dynamic state embodied by the execution of a program.

• Memory: the system that holds the data available to an executing

program

• Task: A logically related sequence of operations and its associated data

environment.

21

Exascale SW Issues

22

ExaScale Assumptions Response …

Parallelism ~O(Billion) Amdahl’s law still applies. Hide

overheads … oversubscription?

Asynchrony? Aggressive load

balancing? All of the above?

MTBF<<App_runtime

Global checkpoints unacceptably slow

relative to computation time

Resilience must be built into the

runtime system … and probably the

programming models and algorithms

as well.

Data Movement dominates energy

and performance

Abstract the hardware but don’t’ hide

it … programmers must be able to

manage data locality.

Software lifespan is greater than

hardware lifespan

Portability is essential … and the

performance better by “mostly”

portable.

Exascale SW Issues

23

ExaScale Assumptions Response …

Parallelism ~O(Billion) Amdahl’s law still applies. Hide

overheads … oversubscription?

Asynchrony? Aggressive load

balancing? All of the above?

MTBF<<App_runtime

Global checkpoints unacceptably slow

relative to computation time

Resilience must be built into the

runtime system … and probably the

programming models and algorithms

as well.

Data Movement dominates energy

and performance

Abstract the hardware but don’t’ hide

it … programmers must be able to

control how data maps onto memory.

Software lifespan is greater than

hardware lifespan

Portability is essential … and the

performance better by “mostly”

portable.

Requires decoupling of work from the
UEs that carry it out … i.e. task based
execution models.

Requires decoupling of work from the
UEs that carry it out … i.e. task based
execution models.

Why do I believe in the promise of task

based systems
• Consider the following two examples

– OpenCL matrix multiplication

– Linear Algebra expressed as a DAG of tasks

24

Blocked matrix multiply: kernel
#define blksz 16

__kernel void mmul(

 const unsigned int N,

 __global float* A,

 __global float* B,

 __global float* C,

 __local float* Awrk,

 __local float* Bwrk)

{

 int kloc, Kblk;

 float Ctmp=0.0f;

 // compute element C(i,j)

 int i = get_global_id(0);

 int j = get_global_id(1);

 // Element C(i,j) is in block C(Iblk,Jblk)

 int Iblk = get_group_id(0);

 int Jblk = get_group_id(1);

 // C(i,j) is element C(iloc, jloc)

 // of block C(Iblk, Jblk)

 int iloc = get_local_id(0);

 int jloc = get_local_id(1);

 int Num_BLK = N/blksz;

 // upper-left-corner and inc for A and B

 int Abase = Iblk*N*blksz; int Ainc = blksz;

 int Bbase = Jblk*blksz; int Binc = blksz*N;

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)

 for (Kblk = 0; Kblk<Num_BLK; Kblk++)

 {

 //Load A(Iblk,Kblk) and B(Kblk,Jblk).

 //Each work-item loads a single element of the two

 //blocks which are shared with the entire work-group

 Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];

 Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 #pragma unroll

 for(kloc=0; kloc<blksz; kloc++)

 Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

 barrier(CLK_LOCAL_MEM_FENCE);

 Abase += Ainc; Bbase += Binc;

 }

 C[j*N+i] = Ctmp;

}

Matrix multiplication … Portable Performance (in MFLOPS)

Case
CPU Xeon Phi

Core i7, HD
Graphics

NVIDIA Tesla

Sequential C (compiled /O3) 224.4 1221.5

C(i,j) per work-item, all
global

841.5 13591 3721

C row per work-item, all
global

869.1 4418 4196

C row per work-item, A row
private

1038.4 24403 8584

C row per work-item, A
private, B local

3984.2 5041 8182

Block oriented approach
using local (blksz=16) 12271.3

74051
(126322*)

38348
(53687*)

119305

Block oriented approach
using local (blksz=32) 16268.8

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Third party names are the property of their owners.
These are not official benchmark results. You may observe completely

different results should you run these tests on your own system.

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB

* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs

Task Based Algorithms & Runtime

• Dataflow Scheduling Engine

• Distributed
• Task Placement through data affinity

• Allows to run the algorithm on any data
distribution

• (use 2D block cyclic for perf.)

• NUMA oriented
• Favor cache reuse

• Limit far accesses

• Manycore & Accelerators
• Tasklet system

• Automatic load balance

http://icl.utk.edu/parsec

Data Distribution & Task Placement

Computing Tasks placement is defined by tiles affinity

When the data distribution of tiles changes, the tasks execute on different nodes

Column Column Rectangular Block
in PLASMA, DPLASMA

GEQRT GEQRT

GEQRT GEQRT

GEQRT GEQRT

DORMQR DORMQR DORMQR DORMQR

DORMQR DORMQR

TSQRT TSQRT

TSQRT TSQRT

TSQRT TSQRT

TSMQR TSMQR TSMQR TSMQR

TSMQR TSMQR TSMQR TSMQR

TSMQR TSMQR

Agenda
• Preliminaries:

– Setting the stage for a conversation about Exascale
computing.

• Methodologies:
– Benchmarks, dirty hands, and the NIH syndrome.

• The landscape of Exascale runtimes
– Who are we watching

• Are tasks a productive path?
– Some suggestive but inconclusive results

• The ACR program
– Another spelling of OCR (a task based runtime)

 29

Example: Execution Model (ACR*)
• Fine-grained, event-

driven (FGED) model
with sophisticated
observation
– work broken into small

tasks and relocatable
data regions

– explicit data-flow and
control-flow
dependencies

– system maps work and
data onto resources

– adapts based on (static
and dynamic)
observations

 Source: Rob Knauerhase’s Cuyahoga review

*ACR: Advanced Compute Runtime: A Rice/Intel project to add advanced locality-aware/power-aware
scheduling to OCR

• OCR
– Open Community Runtime

– Developed collaboratively with multiple partners
(mainly Rice University, Reservoir Labs and Intel)

• The term ‘OCR’ is used to refer to
– A programming model

– A user-level API

– A runtime framework

– One of several reference runtime implementations

OCR

31

mainEdt

fibIterEdt

fibIterEdt

fibIterEdt

sumEdt

doneEdt

Dataflow programming model

32

Runtime maps the
constructed

data-flow graph to
architecture

PE PE PE PE

PE PE PE PESe
rv

ic
e

C
o

re

1MB L2

PE PE PE PE

PE PE PE PESe
rv

ic
e

C
o

re

1MB L2

………..

PE PE PE PE

PE PE PE PESe
rv

ic
e

C
o

re

1MB L2

PE PE PE PE

PE PE PE PESe
rv

ic
e

C
o

re

1MB L2

………..

Shared LLC

Interconnect …
…

…
..

…
…

…
..

N

N-2
N-1

Fib(N-2) Fib(N-1)

Fib(N)

EDT

Datablock Data shared between EDTs

A non-blocking unit of work. Runnable once
all dependences are satisfied.

Creation link: Source EDT creates destination

Dependence: Source EDT satisfies one of
destination’s dependences

Both creation and dependence link

Event Driven Task (EDT)
– Uncoupled from the notion of a thread/core

– Scheduled for exeuction when all required data-
blocks and dependencies have been provided

– Creates other EDTs and provides data-blocks to
them

High level OCR concepts

33

Data Data

Data

Data

Data

Data

Data

Globally visible namespace of data-blocks

– Explicitly created and destroyed

– Only available “global” memory

– Data-blocks can move

EDT1

EDT2

Dependences

– EDT1 provides data to EDT2

– EDT1 “triggers” EDT2 with an event

– EDTs can create other EDTs

Events and
Accessible

data-blocks

Events and
Data-blocks

for other EDTs

Create
other EDTs

EDT

• Dynamic dependence construction

• Focus on minimum needed for placement and scheduling

Example 1: Producer/Consumer

34

Consumer
EDT

Producer
EDT

Data

Concept OCR

Consumer
EDT

Producer
EDT

Data

• Event Driven Tasks (EDTs)
– An EDT is scheduled for execution after all its

dependences are satisfied
– The number of dependences must be known at

creation time
– Dependence satisfaction can occur in any order
– An EDT can, during its execution:

• Create other EDTs and data-blocks (DBs)
• Manipulate the dependence graph for future (not ready) EDTs
• Access stack and ephemeral local heap, but NO global

memory other than the data-blocks.
• Access data-blocks passed in as a dependence or created by

the EDT

– An EDT cannot block during its execution
• Data Blocks (DBs)

– Contiguous block of global memory visible to any EDT

OCR execution model

35

• Steps 1, 2-a, and 2-b need not know about each others’
existence – they may all have been created by another EDT

Example 2a: Simple synchronization

36

Concept OCR

Step 1
EDT

Step 2-a
EDT

Step 2-b
EDT

Step 1
EDT

Step 2-a
EDT

Step 2-b
EDT

Evt1 Evt1

• Events used to:

– Satisfy one or more of an EDT’s dependents

– Dynamically change the flow graph

• Events capture the concepts of:

– Data dependence: data-blocks “flow” along the
edges

– Pure control dependence

Events

37

• Slots are used to order the dependences of an EDT (akin
to the order of arguments in a C function)

Example 2b: Multiple dependences

38

Concept OCR

Step 2
EDT

Step 1-b
EDT

Step 1-a
EDT

Step 2
EDT

Step 1-b
EDT

Step 1-a
EDT

E1 E1 E2 E2

• Each EDT dependence has one slot assigned to it
– Each slot can optionally receive a data-block

• Slots are initially unsatisfied; events connected to the
slot propagate the “satisfied” state

• An EDT becomes runnable once all of its slots are
satisfied, with the order of satisfaction unimportant

Slots of an EDT

39

Unconnected &
Unsatisfied

Connected &
Unsatisfied

Connected &
Satisfied

Add
Dependence

Event
Satisfaction

• All EDTs have a completion event associated with them
– The event becomes satisfied when the EDT completes and

carries the data-block returned by the EDT

• A finish-EDT’s completion event has a special semantic
– The event becomes satisfied when the EDT and all of its

children complete
– The event carries no data-block

• Use cases
– Localized barrier-like synchronization
– Allows for an unknown number of ancestors

• Note that no EDT “waits” for completion

Finish-EDT

40

Example 3: FFT with a finish-EDT

41

Setup EDT

Done EDT

FFT

DFT

FFT

Twiddle

Even
Odd

FFT(Even) FFT(Odd)

FFT(X)

Finish EDT

X

OCR Hello world

inc lude < o c r . h>

ocrGuid_t mainEdt (

 u32 paramc , u64 paramv ,

 u32 depc , ocrEdtDep_t depv [])

{

 PRINTF (’ He l l o World ! \ n ’) ;

 ocrShutdown () ;

 return NULL_GUID;

}

Variables passed into the EDT func.
(i.e. not OCR Data blocks)

Dependencies … available
before an EDT is runnable
(Data Blocks or events).

Shut down OCR (including other
active EDTs … so you need to be
careful when you call this).

• The OCR runtime system will run a programmer’s
EDT called mainEdt() to start an OCR program

Real programmers
look at code

• EDT
– Task templates: ocrEdtTemplateCreate(), ocrEdtTemplateDestroy()
– Tasks: ocrEdtCreate(), ocrEdtDestroy()

• DBs
– Datablock management: ocrDbCreate(), ocrDbDestroy()
– Datablock usage: ocrDbRelease()

• Events
– Event management: ocrEventCreate(), ocrEventDestroy()
– Event satisfaction: ocrEventSatisfy()
– Dependence definition: ocrAddDependence()

• Miscellaneous
– Entry point of OCR: mainEdt()
– Shutdown: ocrShutdown()

API cheat sheet

43

Real programmers
look at code

inc lude < o c r . h>

ocrGuid_t mainEdt (,) {

 ocrGuid_t t1, t2, t3, edt1, edt2, edt3;

 ocrGuid_t outProdDB, outConsEvt;

 ocrEdtTemplateCreate(&t1, prod(), …);

 ocrEdtTemplateCreate(&t2, cons(), …);

 ocrEdtTemplateCreate(&t3, end(), …);

 ocrEdtCreate(&edt1, t1,…stuff …, &outProdDB);

 ocrEdtCreate(&edt2, t2, …stuff …, &outConsEvt);

 ocrEdtCreate(&edt3, t3, …stuff …, NULL);

 ocrAddDependence(&outProdDB, edt2, …stuff);

 ocrAddDependence(&outConsEvt, edt2, …stuff);

 ocrAddDependence(NULL, edt1, …stuff);

 // clean up code to release resources .. Not shown

 return NULL_GUID:

}

Producer-Consumer: mainEDT

All OCR objects referenced by a
Global Unique ID (GUID)

Real programmers
look at code

parameters dependences

Templates for EDT creation … to
connect function to EDT and define
patterns of parameters and
dependences

Create the actual EDTs … output
GUIDs connected to post-slot/return
from EDT function.

Dependences created explicitly and
dynamically … maybe a bit verbose
but the flexibility is empowering!

Trigger the first EDT to start the
computation

inc lude < o c r . h>

ocrGuid_t prod (……. ocrEdtDep_t dep[]) {

 int k; ocrGuid_t db1;

 ocrDbCreate(&db1, (void**)&k, sizeof(int) …);

 k[0] = 42;

 return db1;

}
ocrGuid_t cons (……. ocrEdtDep_t dep[]) {
 int data =(int*)dep[0].ptr;
 PRINTF{“ I consumed %lu\n”, *data);
 return dep[0].guid;
}
ocrGuid_t end (……. ocrEdtDep_t dep[]) {
 ocrDbDestroy{dep[0].guid);
 ocrShutdown();
 return NULL_GUID;

}

Producer-Consumer: EDT functions

Create a data block to hold a single
int

Real programmers
look at code

Return an event bound to the data
block. This is used to trigger other
EDTs

Access the contents of a data block

Return an event bound to the guid of
the data block.

Clean up data blocks in memory and
shutdown OCR.

OCR ecosystem

FSim - TG
Architecture

Low-level
compilers

Platforms

OCR
implementations

LLVM

OCR targeting TG

C, Array
DSL

CnC
Hero
Code

HC

CnC
Translator

HC
Compiler

R-Stream

HTA

PIL

Programming
platforms

OCR API + Tuning Annotations

Open
Community
Runtime

x86

GCC

OCR
targeting x86

Cluster

Evaluation
platforms

• On some code, OCR matches or bests OMP
• Simple scheduler, no data-blocks (very preliminary but promising)

Preliminary results

47

• On some code, OCR matches or bests OMP
• Simple scheduler, no data-blocks (very preliminary but promising)

Preliminary results

48

OCR Rules!!!!

• On some code, OCR matches or bests OMP
• Simple scheduler, no data-blocks (very preliminary but promising)

Preliminary results

49

OCR Rules!!!!

… except when it doesn’t.

OCR Summary

• OCR is not about what it is but what it isn’t.
– OCR is one possible result when one deletes every

concept that isn’t exascale-worthy.

• Exascale needs data encapsulation:
– deprecate heap -> use (relocatable) datablocks.

• Exascale needs encapsulation:
– deprecate procedural flow -> event-driven

(restartable?) tasks

• OCR might be adequate as an exascale runtime
but it’s unclear how to map applications to OCR.
– HPC users want look-and-feel of MPI.

So is OCR the future of extreme scalability?
• OCR is Great!

– OCR is a great test-bed as we work out the details of how to
make task based systems work.

– OCR is a productive research vehicle for our collaboration with
Rice.

– Uncouples tasks from UEs and Data from Memory so we can
experiment with those features and how they help us with
reliability, load balancing and Performance/watt optimization.

• OCR has “issues”
– It does not expose a platform model and therefore lacks

abstractions for programmers to manage locality.
– Data blocks do not provide functionality needed to support

collectives.
– OCR cannot express data parallelism
– OCR codes aren’t modular; the simplest example of that is

iterations. You cannot just take an OCR code segment and put it
in a loop. More ominously, if you change anything in your task
graph of dependencies, you have to reconnect all the “ducts.”

51

The challenge that scares me: Algorithms

• Exascale algorithms can not depend on checkpoint restart.

– Silent Errors … you’ll get them and not even know it.

– Checkpoint is massive data motion, which is to opposite of exa-style

• Need algorithms that make progress and converge to the right

answer even when faults occurs.

– Many machine learning algorithms map onto a master-less map-reduce

pattern and can tolerate faults.

– Some classes of linear algebra algorithms can progress around faults if

subsets of the computation can be made reliable (by replicating tasks).

– Stochastic algorithms

• Research question:

– Can we find fault resilient algorithms for the problems we care about for

exascale systems?

52

Conclusion/Next steps

• We know the problems to solve … and OCR is a good

research vehicle at this time.

• But we have much work to do … We have not settled on a long

term solution.

• Our project in PCL (the extreme scalability group) will engage

in a HW/SW co-design effort:

– Define a set of driving applications.

– Abstract them into a small set of fundamental design patterns.

– Access how key competing models (OCR, HPX,, CHARM++, etc) work

for the above.

– Adopt a current system and adapt it to our needs … or as a last resort

create “yet another programming environment” that does solve the

problem (but it will not be a new language!)

• Stay tuned … we will do this over the next few years! This will

not be solved over night.

53

Case Studies:

• Vector Reduction

– Scalability, modularity, composability & OCR

– Source: Rob Van der Wijngaart of Intel

• FFT

– Divide and conquer with OCR

– Source: Univ. OR undergrad project

54

Vector reduction, an example

• Objective (Parallel Research Kernel reduce):
– Compute element-wise sum of large collection (N)

of vector pairs

– Do this using various methods to demonstrate
performance implications

• Assumption:
– Vector pairs created concurrently by different

workers, spread across system, so need to be in
different Data Blocks and be created in different
EDTs

Three implementations,
distributed memory

• Naïve serial:
– One worker combines all vectors

• Short vectors, asymptotically optimal:
– Workers create (binary) reduction tree
– Each node in tree combines two complete vectors, one

“local,” one “non-local”

• Long vectors, asymptotically optimal (Van de Geijn et
al.):
– Workers execute bucket reduce scatter in a number of

stages
– Workers execute MST gather to collect all reduced vector

snippets at one worker

1. Create N allocation EDTs; each allocates a DB for
one vector, and satisfies output event OE1

2. Create N initialization EDTs, each waits on one
OE1, (re)initializes corresponding vector, and
satisfies output event OE2

3. Create one summation EDT, which waits on N
OE2 events, sums all vectors, satisfies output
event OE3

4. Create wrapup EDT, which waits on OE3, then
shuts down runtime

OCR approach; naïve serial
EDTs can execute
concurrently, but

launch is serial
bottleneck

EDTs can execute
concurrently, but

launch is serial
bottleneck

Master worker
allocates array of
N OE1 guids: not

scalable

Master worker
allocates array of
N OE2 guids: not

scalable

Potential solutions:
• Build EDT launch trees for embarrassingly

parallel sections (sigh); more scalable, but
bottleneck at extreme scale

• Do not use runtime-produced guids, but let
user assign explicit values (cf tags in MPI)

Implicit assumption: “create” done by master worker

OCR approach; naïve serial

iterate

1. Create N allocation EDTs; each allocates a DB for
one vector, and satisfies output event OE1

2. Create N initialization EDTs, each waits on one
OE1, (re)initializes corresponding vector, and
satisfies output event OE2

3. Create one summation EDT, which waits on N
OE2 events, sums all vectors, satisfies output
event OE3

4. Create wrapup EDT, which waits on OE3, then
shuts down runtime

Graph representation

OE1 OE1 OE1 OE1 OE1 OE1

OE2 OE2 OE2 OE2 OE2 OE2

allocate

initialize

OE3 reduce

sink

iterate

• Each Initialize EDT depends on
different OE1, or on OE3 (cannot
duplicate vectors, so must avoid race)

Target waits
On event X

 X

 X EDT satisfying
event X

Observation

Modularity/composability:

• Do not want to or cannot inspect/change
details of dependency structure of program
modules

• Can wrap phases before and after loop, as
well as iteration body, in Finish EDTs
unscalable fork/join style parallelism

OCR approach 2; naïve serial

1. Create N allocation EDTs, each of which allocates
a DB for one vector, and satisfies output event
OE1

2. Create tree of N intialization EDTs; each leaf
waits on one OE1, initializes the corresponding
vector, and satisfies output event OE2

3. Create one summation EDT which waits on N
OE2 events, sums all the vectors, and satisfies
output event OE3

4. Create a wrapup EDT which waits on OE3 and
then shuts down the runtime

Graph representation

OE1 OE1 OE1 OE1 OE1 OE1 allocate

initialize

OE3

sink

OE2

OE2 OE2

OE2

OE2 OE2

EDT creates
target EDT

reduce

How does EDT know it is leaf without
asking how many other leaves already
created (global counter)?
Give EDT sequence # specific to
location in tree.

OCR approach 3; binary reduction tree

1. Create N allocation EDTs, each of which allocates
a DB for one vector, and satisfies output event
OE1

2. Create tree of N initialization EDTs; each leaf
waits on one OE1, initializes the corresponding
vector, and satisfies ouput event OE2

3. Create tree of combine EDTs; each waits on two
OE2s. Root combine EDT satisfies output event
OE3

4. Create a wrapup EDT which waits on OE3 and
then shuts down the runtime

Graph representation

OE1 OE1 OE1 OE1 OE1 OE1 allocate

initialize

OE3

sink

OE2

OE2 OE2

OE2

OE2 OE2

reduce

OE3

OE3
OE3

OE3

Who creates combining EDTs
(OE3)?
Who creates combining EDTs
(OE3)? The empty eggs!

Observations

• Need to know what comes after a certain module (e.g. how
reduction takes place) to write that module: Causality

• Trees abound
– Crowns intertwined
– Cannot afford to build new trees often at exascale
– Cannot create all EDTs in single tree instantiation

• Modularity
• Task queue overflow
• Don’t always know number of iterations

• Guids galore
– Where to store? Must distribute.
– How to pass to other EDTs?
– If replaced by user assigned IDs, how to guarantee object has

come into existence when referencing ID?

Ponder this

Premise:
• OCR was not designed for data parallelism or static

load balancing

• OCR was designed for exascale

Question:
Is there a reason to believe that OCR will scale better
on problems that map to graphs with complicated,
dynamically discovered dependencies than on those
that map to simple graphs that can be load balanced
statically? If yes, why?

Case Studies:

• Vector Reduction

– Scalability, modularity, composability & OCR

– Rob Van der Wijngaart of Intel

• FFT

– Divide and conquer with OCR

– Univ. OR undergrad project

67

LLNL Summer School 07/08/2014

• Final year undergraduate project in Oregon State University

• OCR implementation of Fast Fourier Transform

– Cooley-Tukey algorithm

– Evolution from serial version

– OCR behavior

Background

68

This research was, in part, funded by the U.S. Government, DOE and DARPA. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official policies, either

expressed or implied, of the U.S. Government.

LLNL Summer School 07/08/2014

• Divide-and-conquer

• Data-flow friendly

Algorithm

69

Source:Wikimedia Commons

LLNL Summer School 07/08/2014

Serial implementation

70

Source:Wikimedia Commons

LLNL Summer School 07/08/2014

Naïve implementation

71

Source:Wikimedia Commons

LLNL Summer School 07/08/2014

Bounded implementation

72

Source:Wikimedia Commons

LLNL Summer School 07/08/2014

Bounded implementation with datablock

73

Source:Wikimedia Commons

LLNL Summer School 07/08/2014

Behavior

74

Version No. of EDTs Mean EDT
Longevity (us)

Load variance
across cores (%)

Running time
(s)

Serial 2 1673420 70.7 3.36

Naïve parallel 12582913 253 5.1 877.0

Bounded parallel 1793 1982 2.7 0.46

Bounded parallel
w/ datablocks

1793 1946 2.9 0.45

• OCR X86 running FFT on 232 sized dataset

– 2.9GHz Xeon 16 cores; 8 cores made available to OCR

• Balance to be achieved between number and size of EDTs

LLNL Summer School 07/08/2014

• Serial implementation

• Naïve parallelization – recursive division of DFT

• Bounded parallelization – division bounded by a working set
size

• Bounded parallelization with datablocks – additionally, use 3
datablocks (input, real, imaginary portions)

• Possible next steps for better parallelism

– Finer datablocks

– Staggered creation of EDTs in the twiddle phase

Summary

75

