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– Another spelling of OCR (a task based runtime) 
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Preliminaries: Some definitions 

• ExaScale Computer: An ensemble of nodes with aggregate 

performance of 1018 operations per second when running a 

single exascale application.  

• ExaScale Application: An Application composed a vast 

number of interacting tasks for which a single invocation scales 

to make effective use of the full exaScale System. 

• ExaSkeptic: A curmudgeon who questions the sanity of trying 

to build an exaScale computer requiring applications with 

O(billion) concurrency and a 20 MWatt power budget  by 2020.  
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A grid of 1000 petaFLOP computers is not an ExaScale computer. 
A parameter sweep problem is not an ExaScale Application. 
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Preliminaries: Concerns of an ExaSkeptic 

• Most scientists are still trying to figure out what to do with 

PetaScale … why are we so eager for exaScale?. 

• Most of our collective energy should be directed towards  

mega-PetaScale   

–Open Standard programming models (MPI, OpenMP, OpenCL) 

– Frameworks that support common patterns … programmers write 

apps by plugging mostly serials patches into these frameworks. 

• If we build an exaScale machine in 2020 running at 20 

MWatts  … will it be so bizarre that the techniques utilized 

are unlikely to inform what we do in mainstream HPC? 
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But for now … I will suppress my ExaSkeptic mindset 
and “drink the cool-aid”.  

*Third party names are the property of their owners. 



2 pathways to Exascale 
Runtime Research 

5 

Evolutionary 
(e.g. MPI+X) 

Revolutionary 
(e.g. OCR) 

Challenges on system architecture at scale 

Systemic Exascale Challenges 

 
 
 

System Utilization 
Managing 

Asynchrony 
Data movement cost 

Load Imbalance Fault Tolerance Scalability 
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We love MPI+X and believe it can be made to work if 
programmers use new features in MPI 3 (or maybe MPI 4). 
 
MPI+X is the “status quo” and is well taken care of … so we 
can focus exclusively on revolutionary approaches.  



Agenda 
• Preliminaries: 

– Setting the stage for a conversation about Exascale 
computing. 

• Methodologies:  
– Benchmarks, dirty hands, and the NIH syndrome. 

• The landscape of Exascale runtimes 
– Who are we watching? 

• Are tasks a productive path? 
– Some suggestive but inconclusive results 

• The ACR program 
– Another spelling of OCR (a task based runtime) 

 7 



How to design a great supercomputer? 

• Hardware is only useful to the extent it helps 
you solve problems you care about. 

• Therefore, you must understand the 
application software people will run to guide 
hardware design. 
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High Quality Benchmarks are essential for effective 
system design. 

High Quality Benchmarks are essential for effective 
system design. 



The number one benchmark in use today! 
• MP Linpack and the Top500 list.   It’s a lot of fun … provides a far 

reaching, historical performance metric. 

• Most real applications don’t look anything like MP-Linpack.   

The drive to “set records” has led to machines of questionable value. 
  Focusing on the wrong benchmark has damaged HPC. 

The drive to “set records” has led to machines of questionable value. 
  Focusing on the wrong benchmark has damaged HPC. 



HPCG: A Better benchmark? 

Source: Linear algebra for sparse matrices 
from Big Data Analytics, Piotr Luszczek, UT 

• HPCG (High Performance Conjugate Gradient) closely 
approximates real applications … so it’s a “better” benchmark. 

• But as applications continue to evolve (e.g. shift to big data and graph 
analytics) maybe HPCG will be just as misleading as MP-Linpack. 



The only rational approach to long 
term benchmarking? 

• Give up … Nobody can confidently predict the 
key future workloads.   So don’t even try. 
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• Our conjecture …  

– experienced application programmers know the 
sorts of scalable operations they will depend on. 

– Therefore, benchmark those scalable ops  …  a 
machine that gets those ops right will most likely be 
good for the apps we will care about in the future. 



The Parallel Research Kernels version 1.0 

 Dense matrix transpose 
 Synchronization: global (collective) and point to point 
 Scaled vector addition (Stream triad)* 
 Atomic reference counting, both contended and uncontended 

(locks/TSX) 
 Vector reduction 
 Sparse matrix-vector multiplication 
 Random access update 
 Stencil computation 
 Dense matrix-matrix multiplication (~DGEMM) 
 Branch (inner-loop conditionals + PC panic)* 

12 *embarrassingly parallel 

PRK: Low level constructs that  capture the essence of what parallel 

programmers require from parallel computers.  

PRK: Low level constructs that  capture the essence of what parallel 

programmers require from parallel computers.  



But don’t we need real apps? 

• Real applications must deal with all the messy 
details C.S. researchers try to avoid 
– Legacy code 

– The ugly “boundary cases”  

– Users 

• These “messy details” are essential … so they 
must be addressed. 

• We will find a set of proxy apps to work with and 
a small number of full apps … stay tuned. 



Our approach 

• Drive the research by writing lots of apps/code. 

• If you don’t get your “hands dirty” working with 
real code, you can be easily fooled by hype. 

• Strenuously reject the Not Invented Here 
Syndrome: 

• Our goal:    
– Find the “Franken-runtime” that really works. 

• We call this Mary … named after Mary Shelly (or our trusty 
admin … Mary McCargar-van Arkel).  First there was Ada, 
then the great Linda programming language, and now Mary. 
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CHARM++ (Sanjay Kale, UIUC) 

• CHARM++ is a message-driven execution model 
supporting an actors programming model.   

• Based on message driven relocatable objects.   
– Objects created one-by-one (explicit tasks) or in groups 

(chare-arrays or chare-groups) to express data-parallel 
algorithms. 

• Charm++ uses over-decomposition with concurrent 
schedulers that exploit parallel slackness to keep the 
load balanced (and hide latency).   

• Relocatable data-block and objects plus local check-
pointing and message logging to support resilience. 

http://charm.cs.uiuc.edu/ 



Global Arrays (PNNL/ANL) 

• GA is a global view data model and SPMD execution 
model that assumes replicated, static distributed or 
dynamic distributed processing.   

• GA is built upon flexible RMA and bulk synchronous 
data operations and (unfortunately) 

• GA encourages the use of shared counters for dynamic 
load-balancing. Multiple research efforts show work-
stealing is a superior approach. 

• GA template is FORALL(data): Get-Compute-Update.   

• GA allows process-ID (procid) agnostic code and 
supports resilience through RAID-like data replication. 

http://hpc.pnl.gov/globalarrays/ 



APGAS (asynchronous PGAS) 
• Used to describe X10 and Chapel, not 

traditional PGAS (UPC, CAF, SHMEM, …). 

• Locales/places for locality+hierarchy as in MPI 
but not PGAS 

• Begin-sync/spawn-finish for asynchronous 
tasking 

• Violates Mattson’s Law (No New Languages!) 

• Assuming magical compiler+runtime, APGAS 
surely can do anything! 



Honorable Mentions …  

• HPX 

– A many-tasking runtime system based on 
relocatable PGAS objects and a dataflow model, 
implemented using asynchronous, remote method 
invocation. 

• Legion 

– event driven task model … similar to OCR.    
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More definitions 

• Work: The sequence of operations defined by an execution of a 

program. 

• Unit of execution (UE): an agent that advances the work defined by an 

executing program. 

• Data: The dynamic state embodied by the execution of a program. 

• Memory: the system that holds the data available to an executing 

program 

• Task: A logically related sequence of operations and its associated data 

environment. 
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Exascale SW Issues 
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ExaScale Assumptions Response … 

Parallelism ~O(Billion) Amdahl’s law still applies.  Hide 

overheads … oversubscription?  

Asynchrony?  Aggressive load 

balancing?   All of the above?  

 

MTBF<<App_runtime 

  

Global checkpoints unacceptably slow 

relative to computation time 

Resilience must be built into the 

runtime system … and probably the 

programming models and algorithms 

as well.   

Data Movement dominates energy 

and performance 

Abstract the hardware but don’t’ hide 

it … programmers must be able to 

manage data locality. 

Software lifespan is greater than 

hardware lifespan 

Portability is essential … and the 

performance better by “mostly” 

portable. 
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ExaScale Assumptions Response … 

Parallelism ~O(Billion) Amdahl’s law still applies.  Hide 

overheads … oversubscription?  

Asynchrony?  Aggressive load 

balancing?   All of the above?  

 

MTBF<<App_runtime 

  

Global checkpoints unacceptably slow 

relative to computation time 

Resilience must be built into the 

runtime system … and probably the 

programming models and algorithms 

as well.   

Data Movement dominates energy 

and performance 

Abstract the hardware but don’t’ hide 

it … programmers must be able to 

control how data maps onto memory. 

Software lifespan is greater than 

hardware lifespan 

Portability is essential … and the 

performance better by “mostly” 

portable. 

Requires decoupling of work from the 
UEs that carry it out … i.e. task based 
execution models.  

Requires decoupling of work from the 
UEs that carry it out … i.e. task based 
execution models.  



Why do I believe in the promise of task 

based systems 
• Consider the following two examples 

– OpenCL matrix multiplication 

– Linear Algebra expressed as a DAG of tasks 
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Blocked matrix multiply: kernel 
#define blksz 16 

__kernel void mmul( 

                const unsigned int N, 

                __global float* A, 

                __global float* B, 

                __global float* C, 

                __local  float* Awrk, 

                __local  float* Bwrk) 

{ 

   int kloc, Kblk; 

   float Ctmp=0.0f; 

 

   //  compute element C(i,j) 

   int i = get_global_id(0); 

   int j = get_global_id(1); 

 

   // Element C(i,j) is in block C(Iblk,Jblk) 

   int Iblk = get_group_id(0); 

   int Jblk = get_group_id(1); 

 

   // C(i,j) is element C(iloc, jloc)  

   //  of block C(Iblk, Jblk) 

   int iloc = get_local_id(0); 

   int jloc = get_local_id(1); 

   int Num_BLK = N/blksz; 

  // upper-left-corner and inc for A and B 

  int Abase = Iblk*N*blksz;        int Ainc  = blksz; 

  int Bbase = Jblk*blksz;    int Binc  = blksz*N; 

 

 // C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk) 

  for (Kblk = 0;  Kblk<Num_BLK;  Kblk++) 

  { 

      //Load A(Iblk,Kblk) and B(Kblk,Jblk). 

      //Each work-item loads a single element of the two  

      //blocks which are shared with the entire work-group 

 

      Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc]; 

      Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

 

      #pragma unroll 

      for(kloc=0; kloc<blksz; kloc++) 

         Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc]; 

 

      barrier(CLK_LOCAL_MEM_FENCE); 

      Abase += Ainc;       Bbase += Binc; 

   } 

   C[j*N+i] = Ctmp; 

} 



Matrix multiplication … Portable Performance (in MFLOPS) 

Case 
CPU Xeon Phi 

Core i7, HD 
Graphics 

NVIDIA Tesla 

Sequential C (compiled /O3) 224.4 1221.5  

C(i,j) per work-item, all 
global 

841.5 13591 3721 

C row per work-item, all 
global 

869.1 4418 4196 

C row per work-item, A row 
private 

1038.4 24403 8584 

C row per work-item, A 
private, B local 

3984.2 5041 8182 

Block oriented approach 
using local (blksz=16) 12271.3  

74051 
(126322*) 

38348 
(53687*) 

119305 

Block oriented approach 
using local (blksz=32) 16268.8 

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler  64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3. 

Third party names are the property of their owners. 
These  are not official benchmark results.  You may observe completely 

different results should you run these tests on your own system. 

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB = 4 MB 

* The comp was run twice and only the second time is reported (hides cost of memory movement. 

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory.  ICC 2013 sp1 update 2. 
Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs 



Task Based Algorithms & Runtime 

• Dataflow Scheduling Engine 

• Distributed 
• Task Placement through data affinity 

• Allows to run the algorithm on any data 
distribution 

• (use 2D block cyclic for perf.) 

• NUMA oriented 
• Favor cache reuse 

• Limit far accesses 

• Manycore & Accelerators 
• Tasklet system 

• Automatic load balance 

http://icl.utk.edu/parsec 



Data Distribution & Task Placement 

Computing Tasks placement is defined by tiles affinity 

When the data distribution of tiles changes, the tasks execute on different nodes 

Column Column Rectangular Block 
in PLASMA, DPLASMA 

GEQRT GEQRT 

GEQRT GEQRT 

GEQRT GEQRT 

DORMQR DORMQR DORMQR DORMQR 

DORMQR DORMQR 

TSQRT TSQRT 

TSQRT TSQRT 

TSQRT TSQRT 

TSMQR TSMQR TSMQR TSMQR 

TSMQR TSMQR TSMQR TSMQR 

TSMQR TSMQR 
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Example: Execution Model (ACR*) 
• Fine-grained, event-

driven (FGED) model 
with sophisticated 
observation 
– work broken into small 

tasks and relocatable 
data regions 

– explicit data-flow and 
control-flow 
dependencies 

– system maps work and 
data onto resources 

– adapts based on (static 
and dynamic) 
observations 

 Source: Rob Knauerhase’s Cuyahoga review 

*ACR: Advanced Compute Runtime: A Rice/Intel project to add advanced locality-aware/power-aware 
scheduling to OCR 



• OCR 
– Open Community Runtime 

– Developed collaboratively with multiple partners 
(mainly Rice University, Reservoir Labs and Intel) 

 

• The term ‘OCR’ is used to refer to 
– A programming model 

– A user-level API 

– A runtime framework 

– One of several reference runtime implementations 

 

OCR 
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mainEdt 

fibIterEdt 

fibIterEdt 

fibIterEdt 

sumEdt 

doneEdt 

Dataflow programming model 
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Runtime maps the 
constructed 

data-flow graph to 
architecture 
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Shared LLC 

Interconnect …
…
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.. 
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N 

N-2 
N-1 

Fib(N-2) Fib(N-1) 

Fib(N) 

EDT 

Datablock Data shared between EDTs 

A non-blocking unit of work. Runnable once 
all dependences are satisfied. 

Creation link: Source EDT creates destination 

Dependence: Source EDT satisfies one of 
destination’s dependences 

Both creation and dependence link 



Event Driven Task (EDT) 
– Uncoupled from the notion of a thread/core 

– Scheduled for exeuction when all required data-
blocks and dependencies have been provided 

– Creates other EDTs and provides data-blocks to 
them 

High level OCR concepts 
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Data Data 

Data 

Data 

Data 

Data 

Data 

Globally visible namespace of data-blocks 

– Explicitly created and destroyed 

– Only available “global” memory 

– Data-blocks can move 

 

EDT1 

EDT2 

Dependences 

– EDT1 provides data to EDT2 

– EDT1 “triggers” EDT2   with an event 

– EDTs can create other EDTs 

Events and 
Accessible  

data-blocks 

Events and 
Data-blocks 

for other EDTs 

Create 
other EDTs 

EDT 



• Dynamic dependence construction 

• Focus on minimum needed for placement and scheduling 

Example 1: Producer/Consumer 
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Consumer 
EDT 

Producer 
EDT 

Data 

Concept OCR 

Consumer 
EDT 

Producer 
EDT 

Data 



• Event Driven Tasks (EDTs) 
– An EDT is scheduled for execution after all its 

dependences are satisfied 
– The number of dependences must be known at 

creation time 
– Dependence satisfaction can occur in any order 
– An EDT can, during its execution: 

• Create other EDTs and data-blocks (DBs) 
• Manipulate the dependence graph for future (not ready) EDTs 
• Access stack and ephemeral local heap, but NO global 

memory other than the data-blocks. 
• Access data-blocks passed in as a dependence or created by 

the EDT 

– An EDT cannot block during its execution 
• Data Blocks (DBs) 

– Contiguous block of global memory visible to any EDT 

OCR execution model 
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• Steps 1, 2-a, and 2-b need not know about each others’ 
existence – they may all have been created by another EDT 
 

Example 2a: Simple synchronization 
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Concept OCR 

Step 1 
EDT 

Step 2-a 
EDT 

Step 2-b 
EDT 

Step 1 
EDT 

Step 2-a 
EDT 

Step 2-b 
EDT 

Evt1 Evt1 



• Events used to: 

– Satisfy one or more of an EDT’s dependents 

– Dynamically change the flow graph 

 

• Events capture the concepts of: 

– Data dependence: data-blocks “flow” along the 
edges 

– Pure control dependence   

 

 

Events 
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• Slots are used to order the dependences of an EDT (akin 
to the order of arguments in a C function) 
 

Example 2b: Multiple dependences 
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Concept OCR 

Step 2   
EDT 

Step 1-b 
EDT 

Step 1-a 
EDT 

Step 2   
EDT 

Step 1-b 
EDT 

Step 1-a 
EDT 

E1 E1 E2 E2 



• Each EDT dependence has one slot assigned to it 
– Each slot can optionally receive a data-block 

• Slots are initially unsatisfied; events connected to the 
slot propagate the “satisfied” state 

 

 

 

 

• An EDT becomes runnable once all of its slots are 
satisfied, with the order of satisfaction unimportant 

Slots of an EDT 
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Unconnected & 
Unsatisfied 

Connected & 
Unsatisfied 

Connected & 
Satisfied 

Add 
Dependence 

Event 
Satisfaction 



• All EDTs have a completion event associated with them 
– The event becomes satisfied when the EDT completes and 

carries the data-block returned by the EDT 

• A finish-EDT’s completion event has a special semantic 
– The event becomes satisfied when the EDT and all of its 

children complete 
– The event carries no data-block 

• Use cases 
– Localized barrier-like synchronization 
– Allows for an unknown number of ancestors 

 
• Note that no EDT “waits” for completion 

Finish-EDT 
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Example 3: FFT with a finish-EDT 
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Setup EDT 

Done EDT 

FFT 

DFT  

FFT 

Twiddle 

Even 
Odd 

FFT(Even) FFT(Odd) 

FFT(X) 

Finish EDT 

X 



OCR Hello world 

# inc lude < o c r . h> 

ocrGuid_t mainEdt (  

          u32 paramc , u64 paramv ,  

          u32 depc , ocrEdtDep_t depv [ ] )  

{ 

     PRINTF ( ’ He l l o World ! \ n ’ ) ; 

     ocrShutdown ( ) ; 

     return NULL_GUID; 

} 

Variables passed into the EDT func. 
(i.e. not OCR Data blocks) 

Dependencies … available 
before an EDT is runnable 
(Data Blocks or events).  

Shut down OCR (including other 
active EDTs … so you need to be 
careful when you call this). 

• The OCR runtime system will run a programmer’s 
EDT called mainEdt() to start an OCR program 

Real programmers 
look at code 



• EDT 
– Task templates: ocrEdtTemplateCreate(), ocrEdtTemplateDestroy() 
– Tasks: ocrEdtCreate(), ocrEdtDestroy() 

• DBs 
– Datablock management: ocrDbCreate(), ocrDbDestroy() 
– Datablock usage: ocrDbRelease() 

• Events 
– Event management: ocrEventCreate(), ocrEventDestroy() 
– Event satisfaction: ocrEventSatisfy() 
– Dependence definition: ocrAddDependence() 

• Miscellaneous 
– Entry point of OCR: mainEdt() 
– Shutdown: ocrShutdown() 

API cheat sheet 
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Real programmers 
look at code 



# inc lude < o c r . h> 

ocrGuid_t mainEdt (                     ,                         ) { 

     ocrGuid_t  t1, t2, t3, edt1, edt2, edt3; 

     ocrGuid_t  outProdDB, outConsEvt; 
 

     ocrEdtTemplateCreate( &t1, prod(), …); 

     ocrEdtTemplateCreate( &t2, cons(), …); 

     ocrEdtTemplateCreate( &t3,  end(), …); 
    

     ocrEdtCreate(&edt1, t1,…stuff …, &outProdDB);   

     ocrEdtCreate(&edt2, t2, …stuff …, &outConsEvt); 

     ocrEdtCreate(&edt3, t3, …stuff …, NULL); 
 

     ocrAddDependence(&outProdDB,  edt2, …stuff); 

     ocrAddDependence(&outConsEvt,  edt2, …stuff); 
 

      ocrAddDependence(NULL,  edt1, …stuff); 

 

      // clean up code to release resources .. Not shown 

      return NULL_GUID: 

} 

Producer-Consumer: mainEDT 

All OCR objects referenced by a 
Global Unique ID (GUID) 

Real programmers 
look at code 

parameters dependences 

Templates for EDT creation … to 
connect function to EDT and define 
patterns of parameters and 
dependences 

Create the actual EDTs  … output 
GUIDs connected to post-slot/return 
from EDT function. 

Dependences created explicitly and 
dynamically … maybe a bit verbose 
but the flexibility is empowering! 

Trigger the first EDT to start the 
computation 



# inc lude < o c r . h> 

ocrGuid_t prod ( ……. ocrEdtDep_t dep[]) { 

     int k;  ocrGuid_t  db1; 

     ocrDbCreate(&db1, (void**)&k, sizeof(int) …); 

     k[0] = 42; 

     return db1; 

} 
ocrGuid_t cons ( ……. ocrEdtDep_t dep[]) { 
     int data =(int*)dep[0].ptr; 
     PRINTF{“ I consumed %lu\n”, *data); 
     return  dep[0].guid;  
} 
ocrGuid_t end ( ……. ocrEdtDep_t dep[]) { 
      ocrDbDestroy{dep[0].guid); 
      ocrShutdown(); 
      return NULL_GUID;    

} 

Producer-Consumer: EDT functions 

Create a data block to hold a single 
int 

Real programmers 
look at code 

Return an event bound to the data 
block.  This is used to trigger other 
EDTs 

Access the contents of a data block 

Return an event bound to the guid of 
the data block. 

Clean up data blocks in memory and 
shutdown OCR. 



OCR ecosystem 

FSim - TG 
Architecture 

Low-level 
compilers 

Platforms 

OCR  
implementations 

LLVM 

OCR targeting TG 

C, Array 
DSL 

CnC 
Hero 
Code 

HC 

CnC 
Translator 

HC 
Compiler 

R-Stream 

HTA 

PIL 

Programming 
platforms 

OCR API + Tuning Annotations 

Open 
Community 
Runtime 

x86 

GCC 

OCR 
targeting x86 

Cluster 

Evaluation 
platforms 



• On some code, OCR matches or bests OMP 
• Simple scheduler, no data-blocks (very preliminary but promising) 

Preliminary results 
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• On some code, OCR matches or bests OMP 
• Simple scheduler, no data-blocks (very preliminary but promising) 

Preliminary results 
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OCR Rules!!!! 



• On some code, OCR matches or bests OMP 
• Simple scheduler, no data-blocks (very preliminary but promising) 

Preliminary results 

49 

OCR Rules!!!! 

… except when it doesn’t. 



OCR Summary 

• OCR is not about what it is but what it isn’t. 
– OCR is one possible result when one deletes every 

concept that isn’t exascale-worthy. 

• Exascale needs data encapsulation:  
– deprecate heap -> use (relocatable) datablocks. 

• Exascale needs encapsulation:  
– deprecate procedural flow -> event-driven 

(restartable?) tasks 

• OCR might be adequate as an exascale runtime 
but it’s unclear how to map applications to OCR.  
– HPC users want look-and-feel of MPI. 



So is OCR the future of extreme scalability? 
• OCR is Great! 

– OCR is a great test-bed as we work out the details of how to 
make task based systems work. 

– OCR is a productive research vehicle for our collaboration with 
Rice. 

– Uncouples tasks from UEs and Data from Memory so we can 
experiment with those features and how they help us with  
reliability, load balancing and Performance/watt optimization. 

• OCR has “issues” 
– It does not expose a platform model and therefore lacks 

abstractions for programmers to manage locality. 
– Data blocks do not provide functionality needed to support 

collectives. 
– OCR cannot express data parallelism 
– OCR codes aren’t modular; the simplest example of that is 

iterations. You cannot just take an OCR code segment and put it 
in a loop. More ominously, if you change anything in your task 
graph of dependencies, you have to reconnect all the “ducts.” 
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The challenge that scares me: Algorithms 

• Exascale algorithms can not depend on checkpoint restart. 

– Silent Errors … you’ll get them and not even know it. 

– Checkpoint is massive data motion, which is to opposite of exa-style 

• Need algorithms that make progress and converge to the right 

answer even when faults occurs. 

– Many machine learning algorithms map onto a master-less map-reduce 

pattern and can tolerate faults. 

– Some classes of linear algebra algorithms can progress around faults if 

subsets of the computation can be made reliable (by replicating tasks). 

– Stochastic algorithms 

• Research question: 

– Can we find fault resilient algorithms for the problems we care about for 

exascale systems? 
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Conclusion/Next steps 

• We know the problems to solve … and OCR is a good 

research vehicle at this time. 

• But we have much work to do … We have not settled on a long 

term solution. 

• Our project in PCL (the extreme scalability group) will engage 

in a HW/SW co-design effort: 

– Define a set of driving applications. 

– Abstract them into a small set of fundamental design patterns. 

– Access how key competing models (OCR, HPX,, CHARM++, etc) work 

for the above. 

– Adopt a current system and adapt it to our needs … or as a last resort 

create “yet another programming environment” that does solve the 

problem (but it will not be a new language!) 

• Stay tuned … we will do this over the next few years!  This will 

not be solved over night. 
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Case Studies: 

• Vector Reduction 

– Scalability, modularity, composability & OCR  

– Source: Rob Van der Wijngaart of Intel 

• FFT 

– Divide and conquer with OCR 

– Source: Univ. OR undergrad project 
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Vector reduction, an example 

• Objective (Parallel Research Kernel reduce):  
– Compute element-wise sum of large collection (N) 

of vector pairs  

– Do this using various methods to demonstrate 
performance implications 

• Assumption:  
– Vector pairs created concurrently by different 

workers, spread across system, so need to be in 
different Data Blocks and be created in different 
EDTs 

 
 

 



Three implementations,  
distributed memory 

• Naïve serial: 
– One worker combines all vectors 

• Short vectors, asymptotically optimal:  
– Workers create (binary) reduction tree 
– Each node in tree combines two complete vectors, one 

“local,” one “non-local” 

• Long vectors, asymptotically optimal (Van de Geijn et 
al.): 
– Workers execute bucket reduce scatter in a number of 

stages 
– Workers execute MST gather to collect all reduced vector 

snippets at one worker 



1. Create N allocation EDTs; each allocates a DB for 
one vector, and satisfies output event OE1  

2. Create N initialization EDTs, each waits on one 
OE1, (re)initializes corresponding vector, and 
satisfies output event OE2 

3. Create one summation EDT, which waits on N 
OE2 events, sums all vectors, satisfies output 
event OE3 

4. Create wrapup EDT, which waits on OE3, then 
shuts down runtime 

 

OCR approach; naïve serial 
EDTs can execute 
concurrently, but 

launch is serial 
bottleneck 

EDTs can execute 
concurrently, but 

launch is serial 
bottleneck 

Master worker 
allocates array of 
N OE1 guids: not 

scalable 

Master worker 
allocates array of 
N OE2 guids: not 

scalable 

Potential solutions: 
• Build EDT launch trees for embarrassingly 

parallel sections (sigh); more scalable, but 
bottleneck at extreme scale 

• Do not use runtime-produced guids, but let 
user assign explicit values (cf tags in MPI) 

Implicit assumption: “create” done by master worker 



OCR approach; naïve serial 

iterate 

1. Create N allocation EDTs; each allocates a DB for 
one vector, and satisfies output event OE1  

2. Create N initialization EDTs, each waits on one 
OE1, (re)initializes corresponding vector, and 
satisfies output event OE2 

3. Create one summation EDT, which waits on N 
OE2 events, sums all vectors, satisfies output 
event OE3 

4. Create wrapup EDT, which waits on OE3, then 
shuts down runtime 

 



Graph representation 

OE1 OE1 OE1 OE1 OE1 OE1 

OE2 OE2 OE2 OE2 OE2 OE2 

allocate 

initialize 

OE3 reduce 

sink 

iterate 

• Each Initialize EDT depends on 
different OE1, or on OE3 (cannot  
duplicate vectors, so must avoid race) 

Target waits 
On event X 

  X 

  X EDT satisfying 
event X 



Observation 

Modularity/composability: 

• Do not want to or cannot inspect/change 
details of dependency structure of program 
modules 

• Can wrap phases before and after loop, as 
well as iteration body, in Finish EDTs 
unscalable fork/join style parallelism 

 



OCR approach 2; naïve serial 

1. Create N allocation EDTs, each of which allocates 
a DB for one vector, and satisfies output event 
OE1  

2. Create tree of N intialization EDTs; each leaf 
waits on one OE1, initializes the corresponding 
vector, and satisfies output event OE2 

3. Create one summation EDT which waits on N 
OE2 events, sums all the vectors, and satisfies 
output event OE3 

4. Create a wrapup EDT which waits on OE3 and 
then shuts down the runtime 

 



Graph representation 

OE1 OE1 OE1 OE1 OE1 OE1 allocate 

initialize 

OE3 

sink 

OE2 

OE2 OE2 

OE2 

OE2 OE2 

 
 
 

EDT creates 
target EDT 

reduce 

How does EDT know it is leaf without 
asking how many other leaves already 
created (global counter)? 
Give EDT sequence # specific to 
location in tree. 



OCR approach 3; binary reduction tree 

1. Create N allocation EDTs, each of which allocates 
a DB for one vector, and satisfies output event 
OE1  

2. Create tree of N initialization EDTs; each leaf 
waits on one OE1, initializes the corresponding 
vector, and satisfies ouput event OE2 

3. Create tree of combine EDTs; each waits on two 
OE2s. Root combine EDT satisfies output event 
OE3 

4. Create a wrapup EDT which waits on OE3 and 
then shuts down the runtime 

 



Graph representation 

OE1 OE1 OE1 OE1 OE1 OE1 allocate 

initialize 

OE3 

sink 

OE2 

OE2 OE2 

OE2 

OE2 OE2 

 
 
 

reduce 

OE3 

OE3 
OE3 

OE3 

 
 
 

Who creates combining EDTs 
(OE3)?  
Who creates  combining EDTs 
(OE3)? The empty eggs! 



Observations 

• Need to know what comes after a certain module (e.g. how 
reduction takes place) to write that module: Causality 

• Trees abound 
– Crowns intertwined 
– Cannot afford to build new trees often at exascale 
– Cannot create all EDTs in single tree instantiation 

• Modularity 
• Task queue overflow 
• Don’t always know number of iterations 

• Guids galore  
– Where to store? Must distribute. 
– How to pass to other EDTs? 
– If replaced by user assigned IDs, how to guarantee object has 

come into existence when referencing ID? 

 



Ponder this 

Premise:  
• OCR was not designed for data parallelism or static 

load balancing 

• OCR was designed for exascale 

Question: 
Is there a reason to believe that OCR will scale better 
on problems that map to graphs with complicated, 
dynamically discovered dependencies than on those 
that map to simple graphs that can be load balanced 
statically? If yes, why? 

 



Case Studies: 

• Vector Reduction 

– Scalability, modularity, composability & OCR  

– Rob Van der Wijngaart of Intel 

• FFT 

– Divide and conquer with OCR 

– Univ. OR undergrad project 
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LLNL Summer School 07/08/2014 

• Final year undergraduate project in Oregon State University 

• OCR implementation of Fast Fourier Transform  

– Cooley-Tukey algorithm 

– Evolution from serial version 

– OCR behavior 

 

Background 
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LLNL Summer School 07/08/2014 

• Divide-and-conquer 

• Data-flow friendly 

 

Algorithm 
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Source:Wikimedia Commons 



LLNL Summer School 07/08/2014 

Serial implementation 
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Source:Wikimedia Commons 



LLNL Summer School 07/08/2014 

Naïve implementation 
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Source:Wikimedia Commons 



LLNL Summer School 07/08/2014 

Bounded implementation 
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Source:Wikimedia Commons 



LLNL Summer School 07/08/2014 

Bounded implementation with datablock 
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Source:Wikimedia Commons 



LLNL Summer School 07/08/2014 

Behavior 
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Version No. of EDTs Mean EDT 
Longevity (us) 

Load variance 
across cores (%) 

Running time 
(s) 

Serial 2 1673420 70.7 3.36 

Naïve parallel 12582913 253 5.1 877.0 

Bounded parallel 1793 1982 2.7 0.46 

Bounded parallel 
w/ datablocks 

1793 1946 2.9 0.45 

• OCR X86 running FFT on 232 sized dataset 

– 2.9GHz Xeon 16 cores; 8 cores made available to OCR 

• Balance to be achieved between number and size of EDTs 



LLNL Summer School 07/08/2014 

• Serial implementation 

• Naïve parallelization – recursive division of DFT 

• Bounded parallelization – division bounded by a working set 
size 

• Bounded parallelization with datablocks – additionally, use 3 
datablocks (input, real, imaginary portions) 

 

• Possible next steps for better parallelism 

– Finer datablocks 

– Staggered creation of EDTs in the twiddle phase 

 

 

Summary 
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