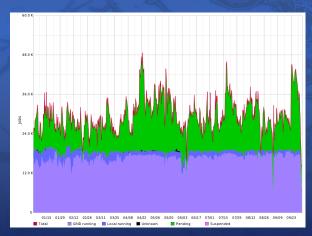
Extending the farm on external sites: the INFN Tier-1 experience

Luca dell'Agnello
INFN-CNAF
CHEP 2016
S. Francisco, October 10 2016

INFN

- National Institute for Nuclear Physics (INFN) is funded by Italian government
- Main mission is the research and the study of elementary particles and physics laws of the Universe
- Composed by several units
 - ~ 20 units dislocated at the main Italian University Physics Departments

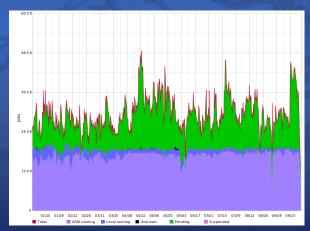
- 4 Laboratories
- 3 National Centers dedicated to specific tasks
- CNAF is a National Center dedicated to computing applications


The Tier-1 at INFN-CNAF

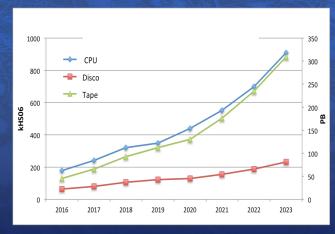
- WLCG Grid site started as computing center for LHC experiments (ATLAS, CMS, LHCb, ALICE)
 - Nowadays provides services and resources to ~30 other scientific collaborations
- ~1.000 WNs , ~21.500 computing slots, ~220 kHS06
 - LSF as current Batch System, HTCondor migration foreseen
 - Also small (~33 TFlops) HPC cluster available with IBA
- 22 PB SAN disk (GPFS), 43 PB on tape (TSM) integrated as an HSM
 - Also supporting LTDP for CDF experiment
- Dedicated network channel (60 Gb/s) for LHC OPN + LHC ONE
 - 20 Gb/s reserved for LHC ONE
 - Upgrade to 100 Gb/s connection in 2017

Computing resource usage

 Computing resources always completely used at CNAF with a large amount of waiting jobs (~50% of the running jobs)



INFN Tier-1 farm usage in 2016



Computing resource usage

- Computing resources always completely used at CNAF with a large amount of waiting jobs (~50% of the running jobs)
- Expected huge resource increase in the next years mostly coming from LHC experiments

INFN Tier-1 farm usage in 2016

INFN Tier-1 resource increase

Toward a (semi-)elastic Data Center?

- Planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)
- A complementary solution could be (dynamic) extension on remote farms
- Cloud bursting on commercial provider
 - Tests of opportunistic computing on Cloud providers
- Static allocation of remote resources
 - First production use case: part of 2016 pledged resources for WLCG experiments at CNAF are in Bari-ReCaS
- Also participating to HNSCicloud EU PCP project

Toward a (semi-)elastic Data Center?

- Planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)
- A complementary solution could be (dynamic) extension on remote farms
- Cloud bursting on commercial provider
 - Tests of opportunistic computing on Cloud providers
- Static allocation of remote resources
 - First production use case: part of 2016 pledged resources for WLCG experiments at CNAF are in Bari-ReCaS

Oct. 10 2016

Also participating to HNSCicloud EU PCP project

Opportunistic computing on Aruba (1)

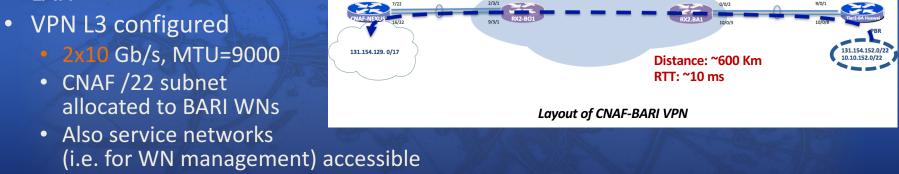
- One of the main Italian commercial resource providers
 - Web, host, mail, cloud ...
 - Main datacenter in Arezzo (near Florence, ~140 km from CNAF)
- Goal
 - Transparently use these external resources "as if they were" in the local cluster, and have LSF dispatching jobs there when available
- Small scale test
 - 10x8 cores VM (160 GHz) managed by VMWare
- Use of idle CPU cycles
 - When a customer requires a resource used by us, the frequency of CPU of "our" VMs is lowered down to a few MHz (not destroyed!)
- Tied to CMS-only specifications
 - No storage on site: remote data access via Xrootd
 - Use of GPN (no dedicated NREN infrastructure)

Opportunistic computing on Aruba (2)

- 9r060.1x
- The remote VMs run the very same jobs delivered to CNAF by GlideinWMS (CMS)
 - Ad hoc configuration at GlideIN could specialize delivery for these resources
- Job efficiency (CPT/WCT) depends on type of job
 - very good for certain type of jobs (MC)
 - Low on average (0.49 vs. 0.80)
- Guaranteed network bandwidth and/or cache system could improve these figures
 - We foresee additional tests with a cache system

Remote extension to Bari ReCaS

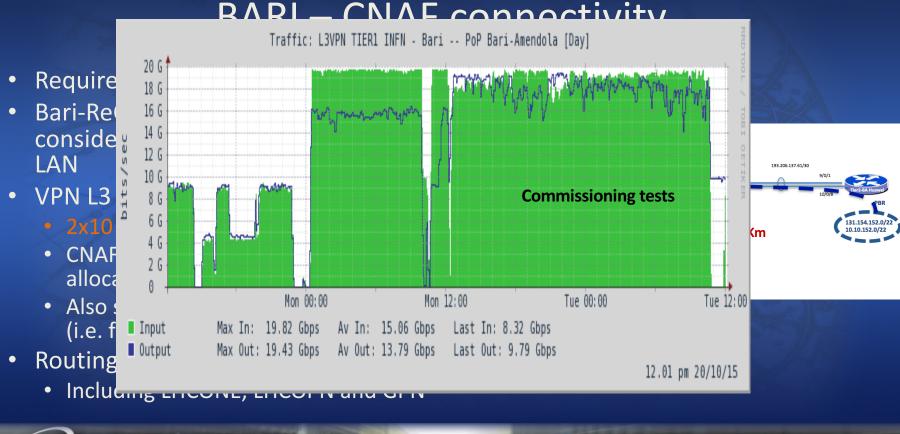
- 48 WNs (~26 kHS06) and ~330 TB of disk allocated to Tier-1 farm for WLCG experiments in Bari-ReCaS data center
 - Bari-ReCaS hosts a Tier-2 for CMS and Alice
- ~10% of CNAF total resources, ~13% of resources pledged to WLCG experiments
- Goal: direct and transparent access from CNAF
- Similar to CERN/Wigner extension



BARI – CNAF connectivity

193,204,219,110/30

- Requirement: link CNAF-ReCaS at least 10 Gbit/s for 1000 cores
- Bari-ReCaS WNs to be considered as on CNAF LAN

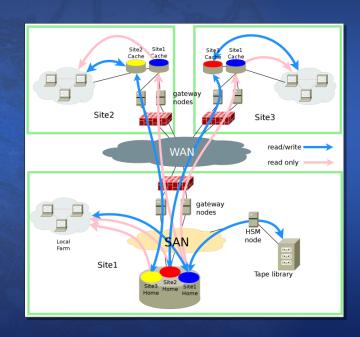

- Routing through CNAF also for BARI WN
 - Including LHCONE, LHCOPN and GPN

13vpn-tier1-Bari

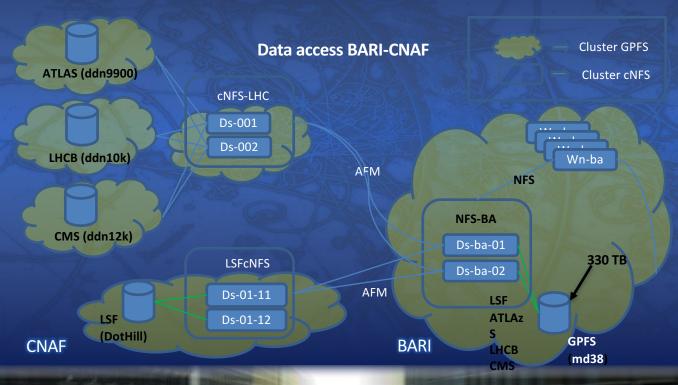
193 206 137 61/30

Farm extension setup

- Goal: transparent access from CNAF farm
 - Should be indistinguishable for users
- CNAF LSF master dispatches jobs also to Bari-ReCaS WNs
 - BARI WNs considered as local resources
- CEs (grid entry points for farm) at CNAF
- Auxiliary services installed in Bari-ReCaS
 - CVMFS Squid servers (for software distribution)
 - Frontier Squid servers (used by ATLAS and CMS for condition db)


Data Access

- Data at CNAF are organized in GPFS file-systems
 - Local access through Posix, Gridftp, Xrootd, and http
 - Remote fs mount from CNAF unfeasible (x100 RTT)
- Jobs expect to access data the same way as at CNAF
 - Not all experiments able to use a fallback protocol
- Local (@ Bari-ReCaS) Posix cache for data needed
 - Alice uses Xrootd only (no cache needed)
- Cache implemented with AFM (GPFS native feature)


Remote data access via GPFS AFM

- GPFS AFM
 - A cache providing geographic replica of a file system
 - Manages RW access to cache
- Two sides
 - Home where the information lives
 - Cache
 - Data written to the cache is copied back to home as quickly as possible
 - Data is copied to the cache when requested
- AFM configured as RO for Bari-ReCaS
- Several tunings and reconfigurations required!
- In any case decided to avoid submission of high throughput jobs in Bari (possible for Atlas)

AFM cache layout

Results: Bari-ReCaS (1)

- Several issues has been addressed
 - Mainly cache reconfiguration and tuning
- At steady state since June 2016
 - ~550 k production jobs (~8% CNAF)

Results: Bari-ReCaS (2)

- Job efficiency @ Bari-ReCaS equivalent (or even better!)
 - In general jobs at CNAF use WNs shared among several VOs
 - during the Summer one of these (non WLCG), with misconfigured jobs, has affected efficiency of all the other VOs
 - Atlas submits only low I/O jobs on Bari-ReCaS
 - Alice uses only XrootD, no cache
 - "intense" WAN usage also from CNAF jobs
- Network was not an issue
 - We could work w/o cache for data using Xrootd
 - But probably we would need more than 20 Gb/s
 - Anyway cache needed for some experiments

Experiment	NJobs	Efficiency
Alice	105109	0,87
Atlas	366999	0,94
CMS	34626	0,80
LHCb	39310	0,92

Job efficiency @BARI

Experiment	NJobs	Efficiency
Alice	536361	0,86
Atlas	4956628	0,87
CMS	326891	0,76
LHCb	263376	0,88

Job efficiency @CNAF

Efficiency = CPT/WCT

Conclusions

- INFN Tier-1 is fully addressing computing requirements from experiments in which INFN is involved
- We are planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)....
- ... but testing (elastic) extension of our Data center is important
 - Infrastructure could not scale indefinitely
 - External extensions could address other use cases such as temporary peak requests in a cheaper way than with flat deployment

Conclusions

- INFN Tier-1 is fully addressing computing requirements from experiments in which INFN is involved
- We are planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)....
- ... but testing (elastic) extension of our Data center is important
 - Infrastructure could not scale indefinitely
 - External extensions could address other use cases such as temporary peak requests in a cheaper way than with flat deployment
- The first results are more than promising ...
- ... but for a more general solution a cache system should be developed

Conclusions

- INFN Tier-1 is fully addressing computing requirements from experiments in which INFN is involved
- We are planning to upgrade the Data Center to host resources at least until the end of LHC Run 3 (2023)....
- ... but testing (elastic) extension of our Data center is important
 - Infrastructure could not scale indefinitely
 - External extensions could address other use cases such as temporary peak requests in a cheaper way than with flat deployment
- The first results are more than promising ...
- ... but for a general solution a cache system should be developed

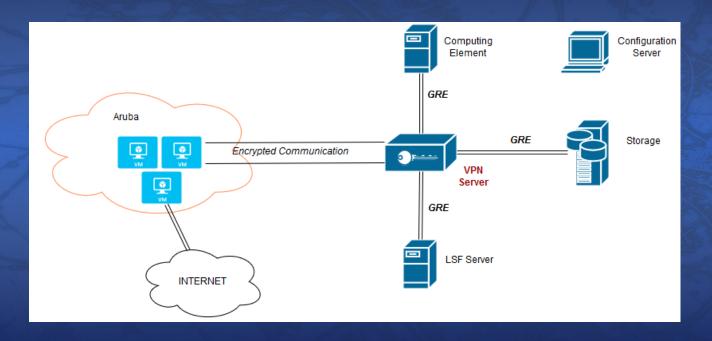
HNSciCloud

- EU Project (call ICT 8a di H2020)
 - Approved (September 2015)
- "Pre-Commercial Procurement" to lease laaS cloud services
 - 2/3 of funding from EU
- Goal: realize a prototype of "hybrid cloud" with commercial providers covering ~5% of all WLCG resources
- Involved <u>CERN</u>, most of EU Tier-1s, DESY, EGI, EMBL
- Still in the phase of writing the technical specifications for the tender.
 - Non negligible administrative effort ☺

Dynfarm concepts

- The VM at boot connects to a OpenVPN based service at CNAF
 - It authenticates the connection (RSA)
 - Delivers parameters to setup a tunnel with (only) the required services at CNAF (LSF, CEs, Argus)
 - Routes are defined on each server to the private IPs of the VMs (GRE Tunnels)
 - Other traffic flows through general network

Dynfarm deployment


- VPN Server side, two RPMs:
 - dynfarm-server, dynfarm-client-server
 - In the VPN server at CNAF. First install creates one dynfarm cred.rpm which must be present in the VMs
- VM side, two RPMs:
 - dynfarm client, dynfarm cred (contains keys to initiate connection and get authenticated by the VPN Server)

Oct. 10 2016

Management: remote control <cmd> <args>

Dynfarm workflow

Auxiliary services

- Cache system for other services to offload network link and speed-up response
 - CVMFS Squid servers (for software distribution)
 - Frontier Squid servers (used by ATLAS and CMS for condition db)
- Dedicated DNS servers at BARI
 - Offer different view to WNs respect to CNAF for application specific servers (e.g. Frontier squids)

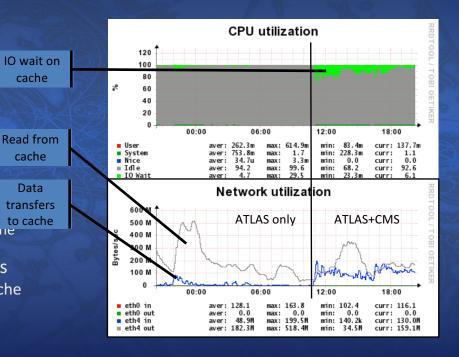
```
[root@ba-3-8-01 ~]# host squid-lhc-01 squid-lhc-01.cr.cnaf.infn.it has address 131.154.152.38
```

[root@wn-206-08-21-03-a ~]# host squid-lhc-01 squid-lhc-01.cr.cnaf.infn.it has address 131.154.128.23

AFM deployment

- Cache storage GPFS/AFM
 - 2 server, 10 Gbit
 - 120 TB → 330 TB (Atlas, CMS, LHCb) as cache for data
- Alice experiment does not need cache
 - Remote Xrootd access to data in any case
- CMS able to fallback to Xrootd protocol in case of posix access failure
- (Small) AFM cache also for LSF shared fs
 - Decoupled from the cache for data to avoid interferences due to I/O intensive jobs

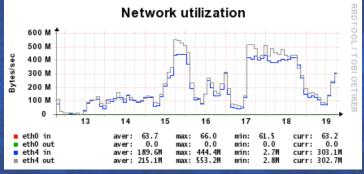
ba-3-x-y: Feb 8 22:56:51 ba-3-9-18 kernel: nfs: server nfs-ba.cr.cnaf.infn.it not responding, timed out


Cache issues

cache

cache

Data

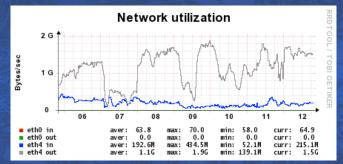

- Local cache access critical
 - Potential bottleneck
- First "incarnation" of cache
 - 120 TB of net disk space
 - Max 1 GB/s r or w
 - Concurrent r/w degrade performances to 100 MB/s
 - 20 TB-N/experiment
 - CMS fills space in 12h
 - to cache Atlas, LHCb use only 10% of the space
- Very low efficiency for CMS jobs
 - Emergency solution: disable cache access
 - Xrootd fallback

Cache tuning (1)

- Enlargement of data cache (from 120 to 330 TB-N)
 - ~100 TB-N per experiment
 - > 50 TB-N CMS can easily accommodate datasets to be reprocessed
 - Avoid pass-through effect

Cache throughput

- ... but performance limits still present
 - Increase of number of disks does not help in this case
- Investigation on GPFS/AFM configuration


Cache tuning (2)

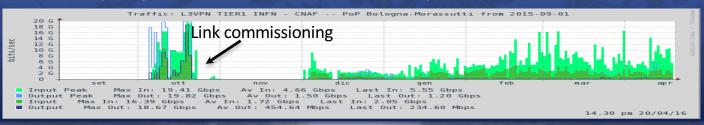
GPFS optimization normally based on supposition that 1 RAIDset =1 LU and is done on LU

level

In our case 1 RAIDset contains 12 LU

- we needed to lower number of processes (threads) working with each LU by factor of 10.
- Increase of fs block size from 1MB to 4MB has reduced I/O operations to get same throughput (and also reduced concurrent I/O on a specific RAIDset)

Cache throughput


Other issues

- Too high # of cores
 - An hw problem on a single WN affects up to 64 jobs
 - Mean job duration time: 3 days
 - Can cost 100 days of wasted CPU time
- I/O load on WN local disk
 - Due to large number of independent processes this can cause latency to access the local disks and hence be a bottleneck
- Suspect occasional problems with the power supplies
 - Too much power needed when WN fully loaded? Still unclear...

Preliminary conclusions

- Several issues has been addressed
 - Not at steady state yet
 - We need to gain more experience to understand limits
- Network was not an issue ©
 - We could work w/o cache for data using Xrootd
 - But (probably) we would need more than 20 Gb/s
 - Anyway cache needed for some experiments

Preliminary conclusions

- Several issues has been addressed
 - Not at steady state yet
 - We need to gain more experience to understand limits
- Network was not an issue ©
 - We could work w/o cache for data using Xrootd
 - But probably we would need more than 20 Gb/s
 - Anyway cache needed for some experiments
- Is this model convenient?
 - Not clear....
 - Need to quantify costs due to efficienty loss, network etc...

The use-case

- Agreement CNAF Aruba
 - Aruba has provided a small amount of Virtual resources (CPU cycles, RAM, DISK) out of a pool assigned to real customers
 - 10x8 cores VM (160 GHz) managed by VMWare
 - When a customer requires a resource used by us, the frequency of CPU of "our"
 VMs is lowered down to a few MHz (not destroyed!)
- Goal
 - Transparently join these external resources "as if they were" in the local cluster, and have LSF dispatching jobs there when available
 - Tied to CMS-only specifications
 - No data caching (hence Xrootd fallback)

Some configuration issues

- Remote Virtual WNs need read-only access to the cluster shared fs (/usr/share/lsf)
 - Use of GPFS/AFM cache as in Bari
- VMs have private IP, are behind NAT & FW, outbound connectivity only, but have to be reachable by LSF
 - Developed an ad hoc service at CNAF (dynfarm) to provide integration between LSF and virtualized computing resources
- LSF needs host resolution (IP ← hostname) but no DNS available for such hosts
 - Manually fixed in /etc/hosts
- Use of GPN (no dedicated link)
 - No problem for a small scale test-bed

"Comparative" Results

Queue	Nodetyp e	Njobs	Avg_eff	Max_eff	Avg_wct	Avg_cpt
Cms_mc	AR	2984	0,602	0,912	199,805	130,482
Alice	T1	98451	0,848	0,953	16,433	13,942
Atlas_sc	T1	1211890	0,922	0,972	1,247	1,153
Cms_mc	T1	41412	0,707	0,926	117,296	93,203
Lhcb	T1	102008	0,960	0,985	23,593	22,631
Atlas_mc	T1	38157	0,803	0,988	19,289	18,239
Alice	BA	25492	0,725	0,966	14,446	10,592
Atlas	ВА	15263	0,738	,979	1,439	1,077
Cms_mcore	ВА	2261	0,444	0,805	146,952	69,735
Lhcb	ВА	13873	0,916	0,967	12,998	11,013
Mcore	ВА	20268	0,685	0,878	24,378	15,658

"Comparative" Results

Queue	Nodetyp e	Njobs	Avg_eff	Max_eff	Avg_wct	Avg_cpt
Cms_mc	AR	2984	0,602 0.5 NING! nParison: non nparison of or nosets of or nosets of or 25 0,738		199,805	130,482
Alice	T1	98451	0.9	t ed	16,433	13,942
Atlas_sc	T1	1211890	ING: OU: L	serve	1,247	1,153
Cms_mc	T1	4141 NAR	abarise of or		117,296	93,203
Lhcb	T1	;, co	n''s sets	ر,985	23,593	22,631
Atlas_mc	T1	Unfail ne	ons jobs	0,988	19,289	18,239
Alice	BA	Moger	2 5	0,966	14,446	10,592
Atlas	ВА	HOI.	0,738	,979	1,439	1,077
Cms_mcore	ВА		0,444	0,805	146,952	69,735
Lhcb	ВА	13873	0,916	0,967	12,998	11,013
Mcore	ВА	20268	0,685	0,878	24,378	15,658

Remote extension to Bari ReCaS

- 48 WNs (~26 kHS06) and ~330 TB of disk allocated to Tier-1 farm for WLCG experiments
 - 64 cores per mb (546 HS06/WN)
 - 1 core/1 slot, 4GB/slot, 8,53 HS06/slot
- ~10% of CNAF total resources, ~13% of resources pledged to WLCG experiments
- Goal: direct and transparent access from CNAF
- Similar to CERN/Wigner extension

The Bari ReCaS Data Center

- Common effort of INFN and Università degli Studi di Bari "Aldo Moro"
- Active from July 2015
- 128 WNs , 8192 (+4000 the old data center) computing slots, ~100k HS06
 - Small HPC Cluster (800 cores) with IBA
- 3.6 PB SAN of disk space, 2.5 PB of space on tape library
- INFN quota (~25 kHS06, 1.1 PB of disk) allocated to CMS and Alice Tier-2

