Beam Transport & Acceleration with Space Charge with the Halodyn Code

Andrea Franchi ESRF, Grenoble

HPC@CNAF meeting, Bologna, 24 June 2014

Outline

- a bit of hystory
- the Halodyn code
- performances, comparisons and applications

Halodyn: a bit of history

- end of 90s: 2D & 3D transport through a FODO multi-cell with space charge (2D & 3D PIC Poisson solver) [Turchetti & Rambaldi]
- 1999-2000: transport parallelized via Message-Passing Interface (MPI) tested and run at CINECA [Turchetti]
- 2001-2002: 3D version called Halodyn for an arbitrary linac lattice with acceleration [Franchi]
- 2002: MPI version of Halodyn tested in Bologna & INFN-Legnaro; massive simulations with 10⁶ macro-particles of the Legnaro's TRASCO DC 30mA 30MW proton linac
- 2003-2006: Systematic benchmarking and comparison of Halodyn in the frame of the CARE network HIPPI (GSI)
- 2006: improving GSI UNILAC DTL transport with Halodyn

The Halodyn code

- Flexible input file for an arbitrary linac structure compatible with Los Alamos Nat. Labs' PARMILA code
- FORTRAN77 2D & 3D Particle-In-Cell Poisson solver for the computation of the space-charge electric field (closed boundary conditions, arbitrary contourn)
- FORTRAN77 Beam transport (2nd-order symplectic integrator) parallelized via MPI, good CPU time scaling $\propto 1/N_p$ (Poisson solver not parallelized)
- 3D focusing matching with space charge (envelope equation)
- acceleration through thin RF cylindrically symmetric cavities
- several types of initial multi-particle distributions & from external file (for comparisons)
- C++ Graphical post-processing tools

• Particle-In-Cell solver with 2 charge deposition options

- 3D FFT algorithm [complex. $\propto (K \log_2 K)^3$] or 2D FFT + 3-diagonal inversion [complex. $\propto K^3 (\log_2 K)^2$], K number of cell nodes per dimension
- Closed (Dirichelet) boundary conditions over the 3D box (test version over cylinder with arbitrary cross-section)
- Space charge electric field via linear interpolation

- Particle-In-Cell solver with 2 charge deposition options
- 3D FFT algorithm [complex. $\propto (K \log_2 K)^3$] or 2D FFT + 3-diagonal inversion [complex. $\propto K^3 (\log_2 K)^2$], K number of cell nodes per dimension
- Closed (Dirichelet) boundary conditions over the 3D box (test version over cylinder with arbitrary cross-section)
- Space charge electric field via linear interpolation

$$\begin{pmatrix} \rho \\ V \end{pmatrix} = \sum_{k} \begin{pmatrix} \rho_{k} \\ V_{k} \end{pmatrix} \sin\left(\frac{\pi}{L_{x}} k_{x} x\right) \sin\left(\frac{\pi}{L_{y}} k_{y} y\right) \sin\left(\frac{\pi}{L_{z}} k_{z} z\right)$$

$$\triangle V(x, y, z, s) = -4\pi\rho(x, y, z, s), \quad \rightarrow \quad V_{k} = \frac{4}{\pi}\rho_{k} \left(\frac{k_{x}^{2}}{L_{x}^{2}} + \frac{k_{y}^{2}}{L_{y}^{2}} + \frac{k_{z}^{2}}{L_{z}^{2}}\right)^{-1}$$

$$E_x(q_x, q_y, q_z) = -\frac{V(q_x + 1, q_y, q_z) - V(q_x, q_y, q_z)}{2\triangle x}$$

- Particle-In-Cell solver with 2 charge deposition options
- 3D FFT algorithm [complex. $\propto (K \log_2 K)^3$] or 2D FFT + 3-diagonal inversion [complex. $\propto K^3 (\log_2 K)^2$], K number of cell nodes per dimension
- Closed (Dirichelet) boundary conditions over the 3D box (test version over cylinder with arbitrary cross-section)
- Space charge electric field via linear interpolation

$$V_0(\vec{x}_j) + \sum_k \alpha_k G_k(\vec{x}_j) = 0$$
$$\rho'(\vec{x}) = \rho(\vec{x}) - \sum_k \alpha_k \delta_{\vec{x}, \vec{x}_k}$$

- Particle-In-Cell solver with 2 charge deposition options
- 3D FFT algorithm [complex. $\propto (K \log_2 K)^3$] or 2D FFT + 3-diagonal inversion [complex. $\propto K^3 (\log_2 K)^2$], K number of cell nodes per dimension
- Closed (Dirichelet) boundary conditions over the 3D box (test version over cylinder with arbitrary cross-section)
- Space charge electric field via linear interpolation

The Halodyn code: the parallel version

• Only the beam transport is parallelized via MPI. Good CPU time scaling unless high grid resolution is used

particelle	1 CPU	5 CPU	10 CPU	20 CPU
104	3	1.6(6.3)	1.6 (10.9)	1.8 (20.8)
105	25.2	6.2(28.7)	3.9(33.6)	2.9(43.9)
2×10^{5}	50.6	11.2(53.4)	6.4(58.4)	4.0 (68.9)
3×10^{5}	75.5	16.7 (78.7)	8.9 (83.1)	5.3(93.3)
7×10^{5}	179.3	36.9(181.1)	19.4(186.6)	13.6(198.4)
106	256.2	52.8(257.8)	27.3(519.6)	14.5(274.6)
$2 imes 10^6$	511.6	103.7 (512.4)	52.7(519.6)	27.4 (528.6)

Tabella 3.4: Tempi solari (in s) per un periodo al variare delle CPU e del numero di particelle. Risoluzione a 64x64. Tra parentesi i tempi di CPU

particelle	1 CPU	5 CPU	10 CPU	20 CPU
104	11.7	13.6(65.3)	14.2(136.9)	15.0(286.3)
105	36.2	18.5(89.6)	16.7(161.1)	16.2(311.3)
2×10^{5}	64.2	25.0 (128.1)	19.9 (191.1)	19.2(344.4)
3×10^5	91.4	30.1 (145.5)	23.0(218.4)	19.4(367.8)
7×10^{5}	201.0	52.3(255.8)	33.8(327)	24.8(454)
106	282.6	68.8 (337.7)	42.3 (411.7)	29.6 (565.7)

Tabella 3.6: Come sopra, con risoluzione 256x256

The Halodyn code: the post-processing

• GUI application to display evolution of beam distribution and parameters along the structure

The Halodyn code: the post-processing

• GUI application to display evolution of beam distribution and parameters along the structure

The Halodyn code: performances

GSI UNILAC DTL section: tracking with space charge

 $^{238}\mathrm{U}^{28+},\,I_{b}=37.5~mA,\,T{=}1.4{\rightarrow}11.4(30)~MeV/u$

# of	code name	CPU time	S-C
macrop.	[instit.]		\mathbf{solver}
10^{6}	IMPACT [*] [Los Alamos / Berkley]	${\sim}4~\mathrm{days}$	(3D)
	HALODYN [*] [Bologna]	${\sim}1~{ m day}$	(3D)
	PARTRAN [Saclay]	$\sim 6 { m days}$	(3D)
10^5	PARMILA [Los Alamos]	$\sim 1.5 ~ m h$	(2D)
	PATH [CERN]	$\sim 1.5 ~ m h$	(2D)
$2 imes 10^4$	PATH [CERN]	${\sim}1.5~\mathrm{days}$	(P-P)
$5 imes 10^3$	DYNAMION [GSI]	${\sim}1.3~\mathrm{days}$	(P-P)

*: to be scaled with # of CPU's

3D : x-y-z PIC solver

2D : r-z azimuthally symmetric PIC solver

P-P: direct particle-particle Coulomb interaction

Code benchmarking (WP-5 CARE-HIPPI network)

Solver accuracy: \vec{E}_{SC} field from given distribution (implicit open boundary conditions)

Code benchmarking (WP-5 CARE-HIPPI network)

Solver accuracy: tune shift from given distribution

Code benchmarking (WP-5 CARE-HIPPI network)

GSI UNILAC DTL tracking with space charge

click me (small init. ϵ_z) click me (large init. ϵ_z)

Halodyn as matching tool for the GSI UNILAC DTL

No buncher cavity between tanks A1-A2 ($\sim 1.5 \text{ m} \sim 8\beta\lambda$) \Rightarrow beam enters tank A2 longitud. mismatched + SC $\Rightarrow \epsilon_z$ growth

Halodyn as matching tool for the GSI UNILAC DTL

Longitudinal emittance Vs. gradient of a proposed buncher cavity

Energy distribution with and without buncher

[a.u]

Problem: buncher cavities available?

Green: Optimal positions for two buncher cavities

Problem: buncher cavities available?

Green: Optimal positions for two buncher cavities

Red: available buncher cavities

Possible solution

Long. emittance Vs. buncher gradients with shorter A1-A2 distance

A1-A2 from 150 to 30 cm + bunchers ON at $E_0TL = 0.6$ MeV \Rightarrow same results by introducing a buncher in A1-A2

Outlook

Halodyn(MPI) ready to be installed and run onto the CNAF HPC

[picture from Wikipedia]