# Architecture of the gLite Metadata Service (AMGA)





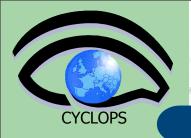
Tony Calanducci
INFN Catania

CYCLOPS First Training
Workshop
Bologna, 11<sup>h</sup>-13<sup>th</sup> April 2007



### Metadata on the GRID

- Metadata is data about data
- On the Grid: information about files
  - Describe files
  - Locate files based on their contents
- But also simplified DB access on the Grid
  - Many Grid applications need structured data
  - Many applications require only simple schemas
    - Can be modelled as metadata
  - Main advantage: better integration with the Grid environment
    - Metadata Service is a Grid component
    - Grid security
    - Hide DB heterogeneity






### Metadata concepts and terminology

- Entries Entities/Objects which we are attaching metadata to
- Attribute key/value pair
  - Type The type (int, float, string,...)
  - Name/Key The name of the attribute
  - Value Value of an entry's attribute
- Schema A set of attributes
- Metadata List of attributes (including their values)
   associated with entries
- Collection A set of entries associated with a schema
  - (AMGA collections are hierarchical organized)
- Analogy to the RDBMS world: think of collections as tables, attributes as columns, entries as rows





# **Example: Movie Trailers**

- Movie trailers files (entries) saved on Grid Storage
   Elements and registered into a LFC File Catalogue
- We have a LFN (Logical File Name) per movie files
- We want to add metadata to describe movie content.
   Possible schema:
  - Title -- varchar
  - Runtime -- int
  - Cast -- varchar
  - LFN -- varchar



AMGA will be the repository of the movies' metadata



### Screenshoots

>> 002e3966-d877-1417-8b9c-c1ced08dbeef

#### Query> selectattr /trailers:Title Runtime FILE 'Runtime > 80' >> Amelie of Montmartre >> 122 >> 004405ac-da9a-1417-92db-c1ced08dbeef Query> listattr /trailers >> American Pie 2 >> 108 >> Title >> 006d56b4-d7d1-1417-8417-c1ced08dbeef >> varchar(200) >> Batman Begins >> Runtime >> 141 >> int >> 0072f510-db33-1417-b12e-c1ced08dbeef >> Country >> The Fast and The Furious >> varchar(25) >> 106 >> 00737e72-d8cb-1417-871f-c1ced08dbeef >> ReleaseDate >> Madagascar >> int >> 86 >> Director >> 0069b608-d95c-1417-9fd1-c1ced08dbeef >> varchar(80) >> The Matrix >> PlotOutline Query> ls >> text >> 004405ac-da9a-1417-92db-c1ced08dbeef >> Cast >> 006d56b4-d7d1-1417-8417-c1ced08dbeef >> varchar(2048) >> 0072f510-db33-1417-b12e-c1ced08dbeef >> Genre >> 00737e72-d8cb-1417-871f-c1ced08dbeef >> varchar(100) >> 0069b608-d95c-1417-9fd1-c1ced08dbeef >> Image >> 0010bf6c-d9cc-1417-a38c-c1ced08dbeef >> text

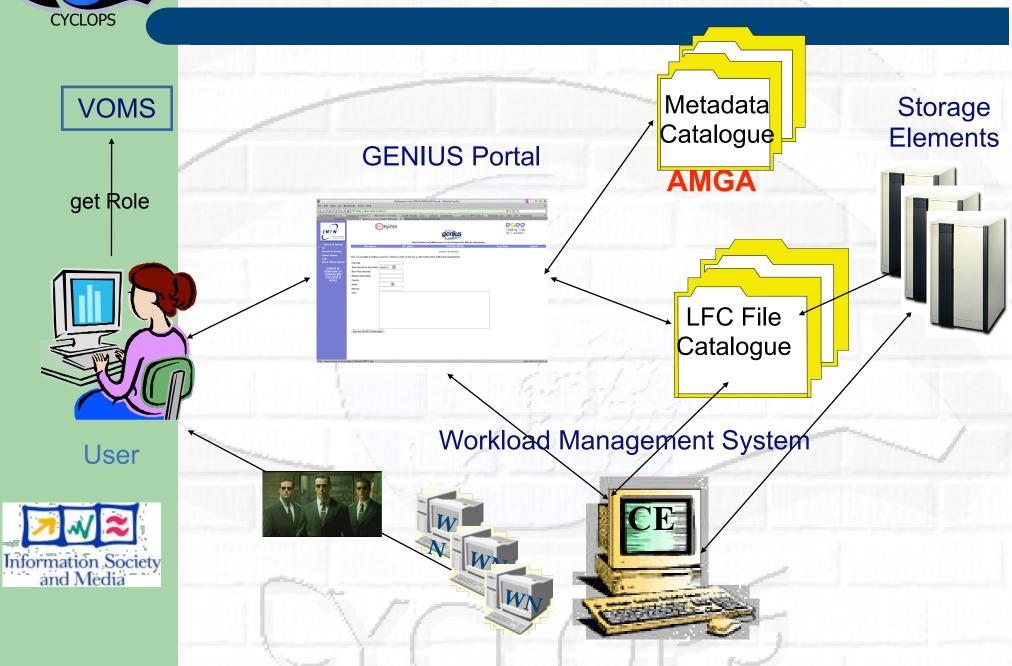


# gMOD: grid Movie On Demand

- gMOD provides a Video-On-Demand service
- User chooses among a list of video and the chosen one is streamed in real time to the video client of the user's workstation
- For each movie a lot of details (Title, Runtime, Country, Release Date, Genre, Director, Case, Plot Outline) are stored and users can search a particular movie querying on one or more attributes
- Two kind of users can interact with gMOD:
   TrailersManagers that can administer the db of movies (uploading new ones and attaching metadata to them); GILDA VO users (guest) can browse, search and choose a movie to be streamed.





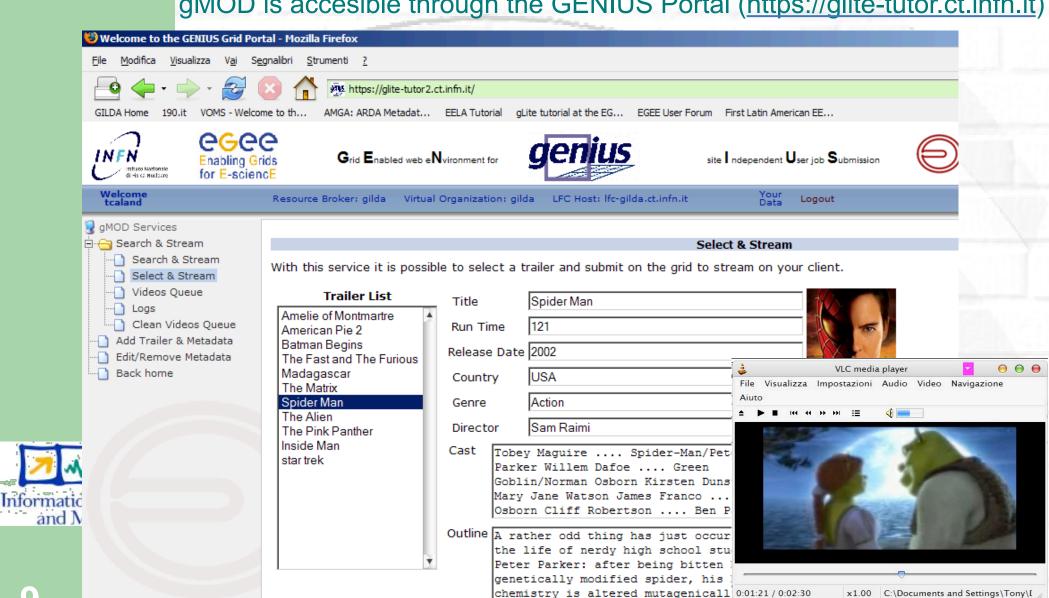

# gMOD under the hood

- Built on top of gLite services:
  - Storage Elements, sited in different place, physically contain the movie files
  - LFC, the File Catalogue, keeps track in which Storage
     Element a particular movie is located
  - AMGA is the repository of the detailed information for each movie, and makes possible queries on them
  - The Virtual Organization Membership Service (VOMS) is used to assign the right role to the different users
  - The Workload Management System (WMS) is responsible to retrieve the chosen movie from the right Storage Element and stream it over the network down to the user's desktop or laptop





# gMOD interactions






### gMOD screenshot

Submit trailer

gMOD is accesible through the GENIUS Portal (<a href="https://glite-tutor.ct.infn.it">https://glite-tutor.ct.infn.it</a>)

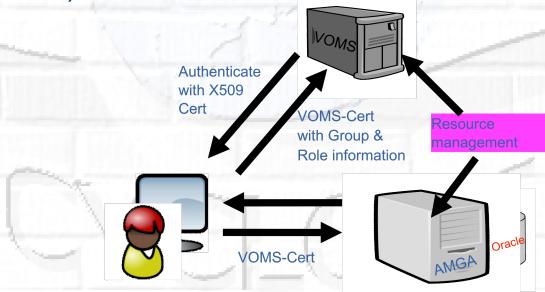


x1.00 C:\Documents and Settings\Tonv\[



### **AMGA** Features

- Dynamic Schemas
  - Schemas can be modified at runtime by client
    - Create, delete schemas
    - Add, remove attributes
- Metadata organised as an hierarchy
  - Collections can contain sub-collections
  - Analogy to file system:
    - Collection ⇔ Directory; Entry ⇔ File
- Flexible Queries
  - SQL-like query language
  - Joins between schemas
  - Example



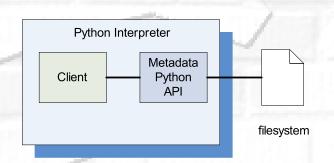



# **AMGA Security**

- Unix style permissions
- ACLs Per-collection or per-entry.
- Secure connections SSL
- Client Authentication based on
  - Username/password
  - General X509 certificates
  - Grid-proxy certificates
- Access control via a Virtual Organization Management System (VOMS):








# **AMGA** Implementation

- C++ multiprocess server
  - Runs on any Linux flavour
- Backends
  - Oracle, MySQL, PostgreSQL, SQLite
- Client SOAP Postgre SQL Server MySQL Streaming SQLite

- Two frontends
  - TCP Streaming
    - High performance
    - Client API for C++, Java, Python, Perl, Ruby
  - SOAP
    - Interoperability
- Also implemented as standalone Python library
  - Data stored on filesystem







### **AMGA** metadata types

#### **AMGA Datatypes**

|              | ${f Postgre SQL}$    | $\mathbf{MySQL}$     | Oracle       | $\mathbf{SQLite}$ | Python         |
|--------------|----------------------|----------------------|--------------|-------------------|----------------|
| int          | integer              | int                  | number(38)   | int               | $_{ m int}$    |
| float        | double precision     | double precision     | float        | float             | float          |
| varchar(n)   | character varying(n) | character varying(n) | varchar2(n)  | varchar(n)        | string         |
| timestamp    | timestamp w/o TZ     | datetime             | timestamp(6) | unsupported       | time (unsupp.) |
| text         | text                 | text                 | long         | text              | string         |
| numeric(p,s) | numeric(p,s)         | numeric(p,s)         | numeric(p,s) | numeric(p,s)      | float          |

- Using the above datatypes you are sure that your metadata can be easily moved to all supported back-ends
- If you do not care about DB portability, you can use, in principle, as entry attribute type ALL the datatypes supported by the back-end, even the more esoteric ones (PostgreSQL Network Address type or Geometric ones)

We played a little bit with GIS Datatype offered by MySQL 5





### **Example with ESR data**

We created a /ESR/opera\_nno collection asking AMGA to use the MyISAM table engine

```
Query> listattr /ESR/opera_nno
>> Dataset
>> varchar(30)
>> File_Name
>> varchar(50)
>> Footprint
>> multipolygon
>> Lat
>> numeric(8,2)
>> Level
>> varchar(5)
```

```
>> Lon
>> numeric(8,2)
>> Orbit
>> int(5)
>> Proc_centre
>> varchar(50)
>> Proc_date
>> timestamp
>> Start_Date
>> timestamp
>> Stop_Date
>> timestamp
...
```

We used insert command that evaluates all inserted values:

```
insert sameEntryName Dataset "GOME" Level 2 Version "v1.1" Orbit 25421 File_Name "/
grid/esr/gome/utv/2000/03/00301000.utv" Start_Date '"2000-02-29 00:01:00.0"' Stop_Date
'"2000-02-29 00:58:00.0"' Footprint 'MPolyFromText("MULTIPOLYGON(((82.96 -59.12,75.95 -89.07,75.95 -89.07,76.46 -94.77,76.84 -100.85,77.07 -107.21,77.13 -115.34,77.00 -121.80,76.72 -128.08,76.30 -134.03,75.74 -139.59,75.07 -144.70,74.30 -149.36,80.26 -179.07,80.26 -179.07,81.52 -174.78,82.71 -169.12,83.81 -161.42,84.76 -150.74,85.47 -136.17,85.80 -117.93,85.57 -94.31,84.94 -78.84,84.03 -67.39,82.96 -59.12)))")'
Proc_centre "EGEE" Proc_date '"2005-10-14 13:20:00.0"' File_input "00301000.1v1"
Proc_description '"Algorithm: utv"'
```



### Sample queries

Let's check if the entry was properly inserted (we need to use AsText() to decode a MultiPolygon):

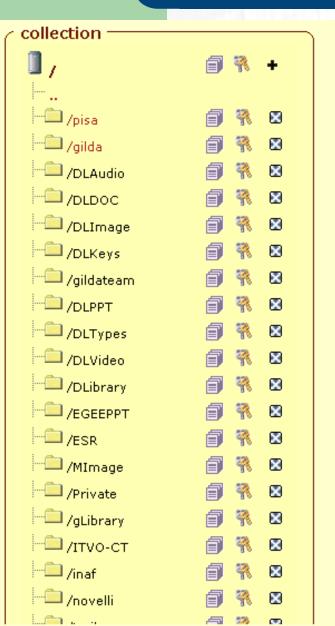
```
Query> selectattr /ESR/opera_nno:File_Name AsText(/ESR/opera_nno:Footprint) ''
>> /grid/esr/gome/utv/2000/03/00301000.utv
>> MULTIPOLYGON(((82.96 -59.12,75.95 -89.07,75.95 -89.07,76.46 -94.77,76.84
-100.85,77.07 -107.21,77.13 -115.34,77 -121.8,76.72 -128.08,76.3 -134.03,75.74
-139.59,75.07 -144.7,74.3 -149.36,80.26 -179.07,80.26 -179.07,81.52 -174.78,82.71
-169.12,83.81 -161.42,84.76 -150.74,85.47 -136.17,85.8 -117.93,85.57 -94.31,84.94
-78.84,84.03 -67.39,82.96 -59.12)))
```

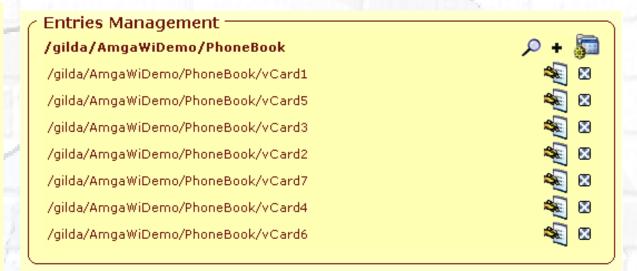
We want to look for a Polygon that cointains a given point:

```
Query> selectattr /ESR/opera_nno:File_Name /ESR/opera_nno:Start_Date /ESR/
opera_nno:Stop_Date 'Contains(/ESR/opera_nno:Footprint, GeomFromText("POINT(82.96
-59.12)"))'
>> /grid/esr/gome/utv/2000/03/00301000.utv
>> 2000-02-29 00:01:00
>> 2000-02-29 00:58:00
```

- >> 20 >> 20 Information Society and Media
- As a summary, the following functions work: GeomFromText(), MPolyFromText(), Contains(), AsText()
- In principle PostgreSQL+PostGIS would also work but this is not tested.




# Accessing AMGA from UI/WNs


- TCP Streaming Front-end
  - mdcli & mdclient and C++ API (md\_cli.h, MD\_Client.h)
  - Java Client API and command line mdjavaclient.sh & mdjavacli.sh (also under Windows !!)
  - Python and Perl Client API
  - PHP Client API NEW
    - eveloped totally by the GILDA team INFN CT
  - AMGA Web Interface ---NEW
    - Developed totally by the GILDA team INFN CT
    - Based on JAVA AMGA Standard APIs
    - Web Application using standard as JSP Custom Tags, Servlet
- SOAP Frontend (WSDL)
  - C++ gSOAP
  - AXIS (Java)
  - ZSI (Python)





### **AMGA Web Interface**





| add collection —— | /gilda/AmgaWiDemo |
|-------------------|-------------------|
| collection :      | add               |
|                   | close             |



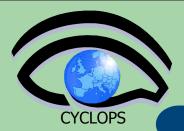
# Metadata Schema Management

| dd attribute ——   | dir : /gilda/AmgaWiDe | mo/PhoneBook |  |  |  |  |
|-------------------|-----------------------|--------------|--|--|--|--|
| attribute.name    |                       |              |  |  |  |  |
| attribute.type    | int                   |              |  |  |  |  |
|                   | add clear close       |              |  |  |  |  |
|                   |                       |              |  |  |  |  |
| hema ————         |                       |              |  |  |  |  |
| attribute.name    | attribute.type        |              |  |  |  |  |
| Name              | varchar               | ×            |  |  |  |  |
| Surname           | varchar               | ×            |  |  |  |  |
| Age               | int                   | ×            |  |  |  |  |
| City              | varchar               | ×            |  |  |  |  |
| Туре              | varchar               | ×            |  |  |  |  |
| PhoneNumber       | varchar               | ×            |  |  |  |  |
|                   |                       |              |  |  |  |  |
| Country           | varchar               | ₩            |  |  |  |  |
| Country<br>Gender | varchar<br>varchar    |              |  |  |  |  |
|                   |                       |              |  |  |  |  |

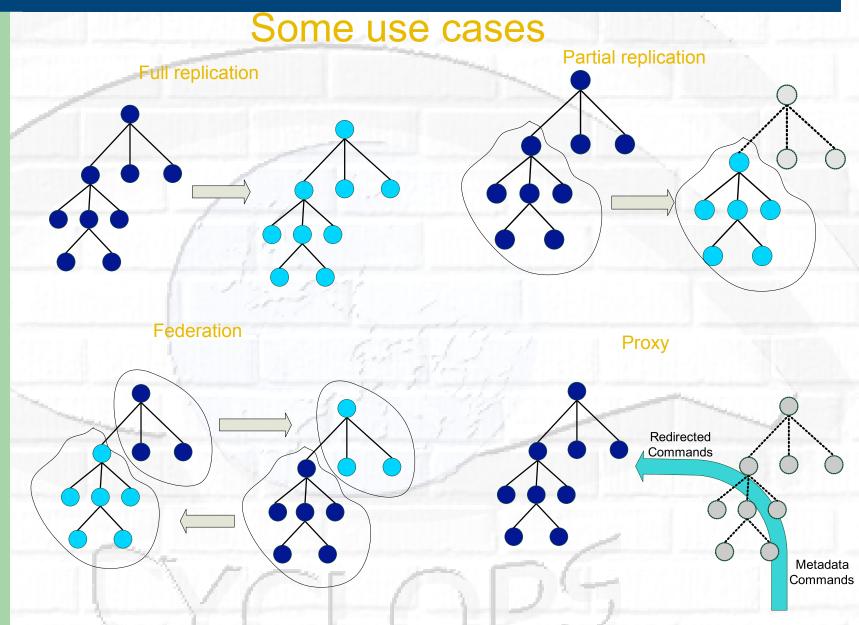




# **Metadata Replication**


#### Motivation

- Scalability Support hundreds/thousands of concurrent users
- Geographical distribution Hide network latency
- Reliability No single point of failure
- DB Independent replication Heterogeneous DB systems
- Disconnected computing Off-line access (laptops)


#### Architecture

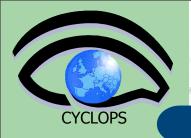
- Asynchronous replication
- Master-slave Writes only allowed on the master
- Replication at the application level
  - Replicate Metadata commands, not SQL → DB independence
- Partial replication supports replication of only sub-trees of the metadata hierarchy





# **Metadata Replication**







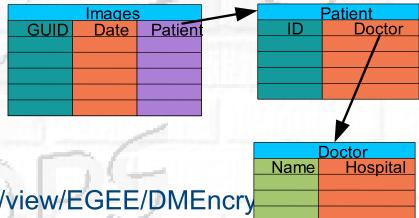

# Early adopters of AMGA

- LHCb-bookkeeping
  - Migrated bookkeeping metadata to ARDA prototype
    - 20M entries, 15 GB
    - Large amount of static metadata
  - Feedback valuable in improving interface and fixing bugs
  - AMGA showing good scalability
- Ganga
  - Job management system
    - Developed jointly by Atlas and LHCb
  - Uses AMGA for storing information about job status
    - Small amount of highly dynamic metadata





### Use AMGA to exchange data among running jobs


- Suppose we have two sets of jobs:
  - Producers: they generate a file, store on a SE, register it onto the LFC File Catalogue assigning a LFN
  - Consumers: they will take a LFN, download the file and elaborate it
- AMGA can be used to share the information generated by the Producers, it could act as a "bag-of-LFNs" (bag-of-task model) from which Consumers can fetch file for further elaboration





### **Biomed**

- Medical Data Manager MDM
  - Store and access medical images and associated metadata on the Grid
  - Built on top of gLite 1.5 data management system
  - Demonstrated at last EGEE conference (October 05, Pisa)
- Strong security requirements
  - Patient data is sensitive
  - Data must be encrypted
  - Metadata access must be restricted to authorized users
- AMGA used as metadata server
  - Demonstrates authentication and
  - encrypted access
  - Used as a simplified DB

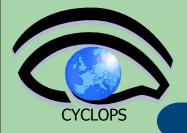





More details at

https://uimon.cern.ch/twiki/bin/view/EGEE/DMEncry










 Huge amounts of data can be saved on SEs (did we forget about the existence of Data Grids?)





- Huge amounts of data can be saved on SEs (did we forget about the existence of Data Grids?)
- But how can we easily find later a file that we need?





- Huge amounts of data can be saved on SEs (did we forget about the existence of Data Grids?)
- But how can we easily find later a file that we need?
  - (if you have good memory, its GUID could be a solution ©)





- Huge amounts of data can be saved on SEs (did we forget about the existence of Data Grids?)
- But how can we easily find later a file that we need?
  - (if you have good memory, its GUID could be a solution ©)
  - File Catalogues just let us to arrange files in folders and subfolders, no way to query on their contents





- Huge amounts of data can be saved on SEs (did we forget about the existence of Data Grids?)
- But how can we easily find later a file that we need?
  - (if you have good memory, its GUID could be a solution ©)
  - File Catalogues just let us to arrange files in folders and subfolders, no way to query on their contents
  - Metadata Catalogues are a possible solution, but not always "affordable" especially for non expert users (powerful but complex to use)





- Huge amounts of data can be saved on SEs (did we forget about the existence of Data Grids?)
- But how can we easily find later a file that we need?
  - (if you have good memory, its GUID could be a solution ©)
  - File Catalogues just let us to arrange files in folders and subfolders, no way to query on their contents
  - Metadata Catalogues are a possible solution, but not always "affordable" especially for non expert users (powerful but complex to use)
- Our solution: a higher level application built on top of many gLite grid services: a Metadata Catalogue + File Catalogues + Storage Elements ->





- Huge amounts of data can be saved on SEs (did we forget about the existence of Data Grids?)
- But how can we easily find later a file that we need?
  - (if you have good memory, its GUID could be a solution ② )
  - File Catalogues just let us to arrange files in folders and subfolders, no way to query on their contents
  - Metadata Catalogues are a possible solution, but not always "affordable" especially for non expert users (powerful but complex to use)
- Our solution: a higher level application built on top of many gLite grid services: a Metadata Catalogue + File Catalogues + Storage Elements ->
- Requirements: easy to use, fast, secure, extensible





# gLibrary goals







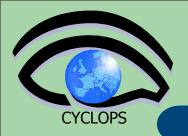
# gLibrary goals

- Attempt to create a Digital Asset Management System for the Grid
  - Examples of Digital Assets handled by gLibrary:
    - Images
    - Videos
    - Audio Files
    - Office Documents (Powerpoint, Word, Excel, OpenOffice)
    - E-Mails, PDFs, HTMLs
    - Customized versions of the previous well-know document type (ex. EGEE PPTs)
    - ....
- Keep track and organize in a uniform way all the additional details (metadata) of files saved in Storage Elements and registered in File Catalogues
- Provide users an easy way to locate and retrieve files based on their contents












#### Example 1:

- Locate all theoretical (PPTType) PowerPoint (Type)
   presentations about "gLite DMS" (Keywords) given in 2005 (Date) by Uncle Sam (Speaker);
- Find all the movies (Type) in which Julia Roberts (Cast) performed together with Hugh Grant (Cast) produced in USA (Country) in 2004 (ReleaseDate); or all the acoustic (Genre) mp3 (Format) audio files (Type) of Alanis Morissette (Singer) that last more than 3 minutes (Runtime).





#### Example 1:

- Locate all theoretical (PPTType) PowerPoint (Type)
   presentations about "gLite DMS" (Keywords) given in 2005 (Date) by Uncle Sam (Speaker);
- Find all the movies (Type) in which Julia Roberts (Cast) performed together with Hugh Grant (Cast) produced in USA (Country) in 2004 (ReleaseDate); or all the acoustic (Genre) mp3 (Format) audio files (Type) of Alanis Morissette (Singer) that last more than 3 minutes (Runtime).

#### Example 2:

 A doctor is looking for brain (keyword) DICOM (Type) images of male (Gender) patients older than 65 (Age).





#### Example 1:

- Locate all theoretical (PPTType) PowerPoint (Type)
   presentations about "gLite DMS" (Keywords) given in 2005 (Date) by Uncle Sam (Speaker);
- Find all the movies (Type) in which Julia Roberts (Cast) performed together with Hugh Grant (Cast) produced in USA (Country) in 2004 (ReleaseDate); or all the acoustic (Genre) mp3 (Format) audio files (Type) of Alanis Morissette (Singer) that last more than 3 minutes (Runtime).

#### Example 2:

 A doctor is looking for brain (keyword) DICOM (Type) images of male (Gender) patients older than 65 (Age).

### Example 3:

 A job can behave as a storage crawler: it scans pre-existing files in Storage Elements to extract relevant metadata that will be published on gLibrary for further data mining.





# Some gLibrary features



- Hierarchical types. Ex:
  - Audio
    - Music
    - Ringtones
    - SoundEffects
  - Video
    - Movies
    - Trailers
    - Clips
- Intuitive browsing (a la iTunes) with 3 customizable filter fields. Ex:
  - for Music you can browse by Genre, Artist, Album, Year, Rating, Format)
  - for Movie you can browse by Genre, ReleaseDate, Studio, Country, Director)
- Grouping of assets by Categories
  - to put together assets of different types but belonging to the same category (think for ex to all the files needed in a given project: images, ppt, pdf, sounds)
  - to narrow furtherly the assets of a given type (ex.: music playlists, preferred movies)
- Your digital libraries accessible from everywhere through a Web 2.0 frontend (AJAX based + Java Applets + PHP 5)





# **gLibrary Security**





# **gLibrary Security**

- User Requirements:
  - a valid proxy with VOMS extensions
  - VOMS Role and Group needed to be recognized by gLibrary as a contents manager.
- 3 kinds of users:
  - gLibraryManager: (s)he can create new content type and allows a generic VO user to become gLibrarySubmitter
  - gLibrarySubmitters: they can add new entries and define access rights on the entries they create.
    - Fine-grained permission (reading, writing, listing, decrypting) settings on each entry: whole VO members, VO groups, list of DNs
  - generic VO users: browse and make queries (on entries they have access to)





# **Summary of Metadata Services**

- AMGA Metadata Service of gLite
  - Part of gLite (but still not certificed in gLite 3.0. it will be done with 3.1 release)
  - Useful for simplified DB access
  - Integrated on the Grid environment (Security)
- Replication/Federation features
- Tests show good performance/scalability
- Already deployed by several Grid Applications
  - LHCb, ATLAS, Biomed, ...
  - AMGA WI, ADAT, gMOD, gLibrary





- AMGA Project Homepage
  - http://amga.web.cern.ch/amga/
- AMGA 1.2.7 User Manual
  - http://amga.web.cern.ch/amga/downloads/amgamanual 1 2 7.pdf
- Exercise documentation from ISSGC'06:
  - http://www.dma.unina.it/~murli/ISSGC06/glite/ public\_html/amga.html
  - http://www.dma.unina.it/~murli/ISSGC06/glite/ public\_html/summaryExercise.htm
- AMGA GILDA Wiki pages:
  - https://grid.ct.infn.it/twiki/bin/view/GILDA/ AMGAHandsOn
  - https://grid.ct-infh-it/twiki/hin/view/GILDA/AMGAAdv



**CYCLOPS** 



# Questions...



