
Policy Framework Proposal

Ciaschini Vincenzo, Ferraro Andrea,
Rubini Gianluca, Zappi Riccardo

INFN – CNAF
4/3/04

Problem Description

• Need to deploy VO-wide policies.
• Need to respect local site policies.
• Need to specify policies relating to the

behavior of the grid as a whole.

Current status

• Policies are decided purely on a local
site basis (LCAS,grid-mapfile, GACL).

– they are only ACLs.

• There are no VO policies.
– VO themselves are just list of users with

some attributes attached.

Previous Art

• CAS
– Allows specification of just everything, but:
– Completely removes control from site admins.
– Requires VO to know everything about the

layout and internals of farms.

• LCAS
– Only a static ACL.
– Deployed on local sites only.

Policy examples

• Users belonging to group /vo/a may only
submit 10 jobs a day.

• Users belonging to group /vo/b should
have their jobs submitted on the max
priority queue.

• User “some user” is banned from the
CNAF site.

Requirements

• The system should:
– Be VO-based and distributed.
– Be highly configurable and able to define and

enforce previously unknown types of policies.
– Leave total control on local sites to local

admins.
– Be capable of express policies requiring a

global view of the grid.
– Be compliant to existing protocols and not

require their redesign.

Our Proposal: PBOX

• An independent sets of modules that can
be “plugged in” in the current architecture.

• Standards Compliant (RBAC, XACML,
GSI)

• Distributed architecture.
• Leveled list of PBOXes (VO PBOX, Grid

PBOX, Farm PBOX, possibly subFarm
PBOX, etc…)

PBox leveled organization
• PBoxes distribute

policies between
themselves.

• Grid PBoxes are, for
example, Grid.it or
LCG, or EGEE
PBoxes.

FARM PBOX

GRID PBOX

VO PBOX

PBox leveled organization

HLR

• PBoxes distribute
policies between
themselves.

• Grid PBoxes are, for
example, Grid.it or
LCG, or EGEE
PBoxes.

• An HLR, part of the
accounting system, is
necessary for
accounting policies.

FARM PBOX

GRID PBOX

VO PBOX

PBox Structure
• PAT: An administrative tool to

manage policies.
• PR: A database containing

current policies and an history
of older ones.

• PDP: A module making and
communicating decisions
regarding policies.

• PCI: A communication
interface between 2 PBoxes

• PEP: A client-side module
contacting PDP and receiving
a response.

Client o
Resource Broker

Policy
administration

tool (PAT)

Policy decision point
(PDP)

Policy enforcement
point
(PEP)

Policy
repository

(PR)

PBOX

Policy Communication
Interface

(PCI)

PBOX

(PCI)

Policy
administration

tool (PAT)

Policy decision point
(PDP)

Policy enforcement
point
(PEP)

Policy
repository

(PR)

PBOX

Policy Communication
Interface

(PCI)

PBOX

(PCI)

PBox Structure: PAT

• PAT is the tool the policy
admins use to insert, delete,
modify their own policies, and
approve or refuse policies
coming from external PDPs.

• It also implements various views
on the DB.

• Does not require exceptional
performances.

• Holds a list of policies from
other levels pending for
approval.

• Communication with PDP and
PR in the clear.

Client o
Resource Broker

PBox Structure: PR

• Holds all active and old
policies.

• RDBMS without need for XML
support.

• Communicates with PDP and
PAT in the clear.

Policy
administration

tool (PAT)

Policy decision point
(PDP)

Policy enforcement
point
(PEP)

Policy
repository

(PR)

PBOX

Policy Communication
Interface

(PCI)

PBOX

(PCI)

Client o
Resource Broker

PBox Structure: PDP

• Receives requests from
clients and makes decisions
depending on active policies.

• Takes full advantage of
existing standards (Policies in
XACML format)

• Efficiency is critical.
• Communication with PEP

secure or insecure depending
on configuration.

• Communication with PR on
the clear.

Policy
administration

tool (PAT)

Policy decision point
(PDP)

Policy enforcement
point
(PEP)

Policy
repository

(PR)

PBOX

Policy Communication
Interface

(PCI)

PBOX

(PCI)

Client o
Resource Broker

PBox Structure: PCI

• Handles communication
between different PDPs.

• Communications between
PCIs are reliable,
confidential, authenticated
and integrity-checked. GSI
will be used.

Policy
administration

tool (PAT)

Policy decision point
(PDP)

Policy enforcement
point
(PEP)

Policy
repository

(PR)

PBOX

Policy Communication
Interface

(PCI)

PBOX

(PCI)

Client o
Resource Broker

PBox Structure: PEP

• Module contacting the PDP to
evaluate a request.

• Should be programmed
directly into clients (RB, GTK,
SE, etc…) by their developers.

• Will use an API that we will
release together with P-BOX.

• Can return a string that should
be interpreted by the client.
These strings will be known in
advance by clients’
developers.

Policy
administration

tool (PAT)

Policy decision point
(PDP)

Policy enforcement
point
(PEP)

Policy
repository

(PR)

PBOX

Policy Communication
Interface

(PCI)

PBOX

(PCI)

Client o
Resource Broker

PBox Structure: HLR

• Third part software: part of
the accounting system.

• Will keep track of how
much resources have
already been used from
the set of the allotted
ones.

• Not part of PBOX, but
some policies require a
functional accounting to
be implemented.

HLR

FARM PBOX

GRID PBOX

VO PBOX

Policy Format

• Two different formats:
– XACML (eXtended Access Control Markup

Language)
• Completely standard as defined by the OASIS group and

approved by GGF and with a well-defined semantics.
• Will be used inside PDP and will be the “normative” form a

policy.
• Unfortunately, quite winded and difficult to understand. Site

admins have already been resistant to its use.
– PPL (P-BOX Policy Language)

• Simple language to be used by site admins to write and
review policies.

• All PPL policies have a precise translation into XACML.
• Much easier to read, write and understand.

XACML vs PPL
<?xml version="1.0" encoding="UTF-8"?>

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy cs- xacml-schema-policy-01.xsd" PolicyId="ObligationPolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit- overrides">

<Target>

<Subjects> <Subject>

<SubjectMatchMatchId="urn:oasis:names:tc:xacml:1.0:function:rfc822Name- match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">users.example.com</AttributeValue>

<SubjectAttributeDesignator DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name" AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>

</SubjectMatch>

</Subject> </Subjects>

<Resources> <Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">http://server.example.com/sensitive/.*

</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>

</Resource> </Resources>

<Actions> <AnyAction/> </Actions>

</Target>
<Rule RuleId="AllowAllReads" Effect="Permit"> <Target>

<Subjects> <AnySubject/> </Subjects> <Resources> <AnyResource/> </Resources>
<Actions> <Action> <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string -equal">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">read</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/>

</ActionMatch> </Action> </Actions>
</Target> </Rule>
<Rule RuleId="DenyOtherActions" Effect="Deny"/>
<Obligations> <Obligation ObligationId="LogSuccessfulRead" FulfillOn="Permit">

<AttributeAssignment AttributeId="user" DataType="http://www.w3.org/2001/XMLSchema#anyURI">
urn:oasis:names:tc:xacml:1.0:subject:subject-id

</AttributeAssignment>
<AttributeAssignment AttributeId="resource" DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:1.0:resource:resource-id
</AttributeAssignment>

</Obligation> </Obligations>
<Obligations> <Obligation ObligationId="LogInvalidAccess" FulfillOn="Deny">

<AttributeAssignment AttributeId="user" DataType="http://www.w3.org/2001/XMLSchema#anyURI">
urn:oasis:names:tc:xacml:1.0:subject:subject-id

</AttributeAssignment>
<AttributeAssignment AttributeId="resource" DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:1.0:resource:resource-id
</AttributeAssignment>
<AttributeAssignment AttributeId="action" DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:1.0:action:action-id
</AttributeAssignment>

</Obligation> </Obligations>
</Policy>

XACML vs PPL
<?xml version="1.0" encoding="UTF-8"?>

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy cs- xacml-schema-policy-01.xsd" PolicyId="ObligationPolicy"
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit- overrides">

<Target>

<Subjects> <Subject>

<SubjectMatchMatchId="urn:oasis:names:tc:xacml:1.0:function:rfc822Name- match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">users.example.com</AttributeValue>

<SubjectAttributeDesignator DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name" AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/>

</SubjectMatch>

</Subject> </Subjects>

<Resources> <Resource>

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match">

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">http://server.example.com/sensitive/.*

</AttributeValue>

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/>

</ResourceMatch>

</Resource> </Resources>

<Actions> <AnyAction/> </Actions>

</Target>

subj email *@users.example.com ; res * ; act read attr * ; cond true; dec allow ‘log subj res act’;

subj * ; res * ; act *; cond true; dec deny ‘log subj res act’ ;

Type of Policies

• VO Policies
– Only of interest to VOs.
– Local sites do not need to take any special actions. In

principle they do not need to know them.
• Site Policies

– Only of interest to local sites.
– VOs do not need to know them.

• Mixed Policies
– Policies that are of interest both to Local sites and

VOs.
– Ban lists, Contractual agreements, etc…

Policy Examples by Type (PPL)
• VO Policy

– Users belonging to the CMS-Italia subgroup of CMS may submit
a maximum of 100 jobs.

– subj attr /CMS/CMS-Italia ; obj * ; act submit ; cond user-submit-
number <= 100; dec allow ‘’;

• Site Policy
– Physical directory /disk6/cms is associated to published directory

/data/cms.
– subj attr /CMS ; obj *; act write; cond dir=/data/cms; dec allow

‘dir=/disk6/cms’;
• Mixed Policy

– User Vincenzo Ciaschini cannot submit jobs at CNAF.
– subj subject /C=IT/*/CN=Vincenzo Ciaschini/*; obj *.cnaf.infn.it;

act submit; cond true; dec deny ‘’;

Flow Control: Policy Creation
• VO

– VO Admin inserts a new policy into PAT.
– PAT copies policy into PDP and PR, taking

note of approval status with farms.
– PAT sends policy to PCI, which in turn sends

it to Farm PCI.
• SITE

– Farm PCI inserts the received policy into a
PAT queue, waiting for approval.

– Farm Admin reviews received policy and
decides whether to accept or refuse it.

• If he accepts it, the policy is immediately
communicated to his PDP and PR.

– Farm Admin sends the answer to his PCI,
which communicates it to VO PCI.

• VO
– VO PCI receives answer from Farm PCI and

communicates it to PAT.
– PAT updates PR and PDP with the

information about policy acceptance received
from the farm and alerts VO admin.

VO
Admin

Site
Admin

VO
Admin

PAT

PDP

PR

VO PBox

PCI

VO
Admin PAT

PDP

PR

PCI

Site PBox

Flow Control: Policy Enforcement
• The user submits a job to the RB.
• RB contacts HLR to get accounting information (space

used, jobs, etc…)
• RB’s PEP contacts VO PBox to see if the user is

allowed to execute an action.
• VO PBox answers, possibly along with a list of CE

where the policies allow the user to submit jobs.
• If all goes well, the job is submitted to a CE.
• CE’s PEP contacts FARM PBox to verify that the user

is allowed to submit a job.
• In case of a positive answer, CE contacts HLR to

retract tokens.
• If latest operatoin went okay, the job is effectively

submitted.

PR PEP

CE

HLR

RB

PEP

User

VO PBox

FARM PBox

NOTES

Without HLR, policies requiring a VO-wide view of the
grid cannot be implemented.

If a user skips the RB to submit a job directly to CE, VO
policies are still enforced by the CE, and so the user
risks submitting on a farm where policies do not allow
him to submit, and so the operation fails.

Indicative Timeline

• Proposal: Here it is!
• Alpha release: late july 2004.
• Alpha testing and fixes: late july - late

september 2004.
• Beta release: late december 2004.
• Beta testing and fixes: late december 2004

- late march 2005.
• Release 1.0: late july 2005.

Group membership and pointers

• Home Page:
– INFNForge on

http://infnforge.cnaf.infn.it/projects/pbox
• Group Members

– Ciaschini Vincenzo (ciaschini@cnaf.infn.it)
– Ferraro Andrea (andrea.ferraro@cnaf.infn.it)
– Rubini Gianluca (grubini@cnaf.infn.it)
– Zappi Riccardo (riccardo.zappi@cnaf.infn.it)

• External Collaborators
– Guarise Andrea (guarise@to.infn.it)
– Caltroni Andrea (andrea.caltroni@pd.infn.it)

