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Problem Description

• Need to deploy VO-wide policies.
• Need to respect local site policies.
• Need to specify policies relating to the 

behavior of the grid as a whole.



Current status

• Policies are decided purely on a local 
site basis (LCAS,grid-mapfile, GACL).

– they are only ACLs.

• There are no VO policies.
– VO themselves are just list of users with 

some attributes attached.



Previous Art

• CAS
– Allows specification of just everything, but:
– Completely removes control from site admins.
– Requires VO to know everything about the 

layout and internals of farms.

• LCAS
– Only a static ACL.
– Deployed on local sites only.



Policy examples

• Users belonging to group /vo/a may only 
submit 10 jobs a day.

• Users belonging to group /vo/b should 
have their jobs submitted on the max 
priority queue.

• User “some user” is banned from the 
CNAF site.



Requirements

• The system should:
– Be VO-based and distributed.
– Be highly configurable and able to define and 

enforce previously unknown types of policies.
– Leave total control on local sites to local 

admins.
– Be capable of express policies requiring a 

global view of the grid.
– Be compliant to existing protocols and not 

require their redesign.



Our Proposal: PBOX

• An independent sets of modules that can 
be “plugged in” in the current architecture.

• Standards Compliant (RBAC, XACML, 
GSI)

• Distributed architecture.
• Leveled list of PBOXes (VO PBOX, Grid 

PBOX,  Farm PBOX, possibly subFarm
PBOX, etc…)



PBox leveled organization
• PBoxes distribute 

policies between 
themselves.

• Grid PBoxes are, for 
example, Grid.it or 
LCG, or EGEE 
PBoxes.
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PBox leveled organization

HLR

• PBoxes distribute 
policies between 
themselves.

• Grid PBoxes are, for 
example, Grid.it or 
LCG, or EGEE 
PBoxes.

• An HLR, part of the 
accounting system, is 
necessary for 
accounting policies.
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PBox Structure
• PAT: An administrative tool to 

manage policies.
• PR: A database containing 

current policies and an history 
of older ones.

• PDP: A module making and 
communicating decisions 
regarding policies.

• PCI: A communication 
interface between 2 PBoxes

• PEP: A client-side module 
contacting PDP and receiving 
a response.
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PBox Structure: PAT

• PAT is the tool the policy 
admins use to insert, delete, 
modify their own policies, and 
approve or refuse policies 
coming from external PDPs.

• It also implements various views 
on the DB.

• Does not require exceptional 
performances.

• Holds a list of policies from 
other levels pending for 
approval.

• Communication with PDP and 
PR in the clear.

Client o
Resource Broker



PBox Structure: PR

• Holds all active and old 
policies.

• RDBMS without need for XML 
support.

• Communicates with PDP and  
PAT in the clear.
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PBox Structure: PDP

• Receives requests from 
clients and makes decisions 
depending on active policies.

• Takes full advantage of 
existing standards (Policies in 
XACML format)

• Efficiency is critical.
• Communication with PEP 

secure or insecure depending 
on configuration.

• Communication with PR on 
the clear.
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PBox Structure: PCI

• Handles communication 
between different PDPs.

• Communications between 
PCIs are reliable, 
confidential, authenticated 
and integrity-checked.  GSI 
will be used.

Policy 
administration

tool (PAT)

Policy decision point
(PDP)

Policy enforcement 
point
(PEP)

Policy
repository

(PR)

PBOX

Policy Communication 
Interface

(PCI)

PBOX

(PCI)

Client o
Resource Broker



PBox Structure: PEP

• Module contacting the PDP to 
evaluate a request.

• Should be programmed 
directly into clients (RB, GTK, 
SE, etc…) by their developers.

• Will use an API that we will 
release together with P-BOX.

• Can return a string that should 
be interpreted by the client.  
These strings will be known in 
advance by clients’ 
developers.
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PBox Structure: HLR

• Third part software: part of 
the accounting system.

• Will keep track of how 
much resources have 
already been used from 
the set of the allotted 
ones.

• Not part of PBOX, but 
some policies require a 
functional accounting to 
be implemented.
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Policy Format

• Two different formats:
– XACML (eXtended Access Control Markup 

Language)
• Completely standard as defined by the OASIS group and 

approved by GGF and with a well-defined semantics.
• Will be used inside PDP and will be the “normative” form a 

policy.
• Unfortunately, quite winded and difficult to understand. Site 

admins have already been resistant to its use.
– PPL (P-BOX Policy Language)

• Simple language to be used by site admins to write and 
review policies.

• All PPL policies have a precise translation into XACML.
• Much easier to read, write and understand.



XACML vs PPL
<?xml version="1.0" encoding="UTF-8"?> 

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy cs- xacml-schema-policy-01.xsd" PolicyId="ObligationPolicy" 
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit- overrides"> 

<Target> 

<Subjects> <Subject> 

<SubjectMatchMatchId="urn:oasis:names:tc:xacml:1.0:function:rfc822Name- match"> 

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">users.example.com</AttributeValue>

<SubjectAttributeDesignator DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name" AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/> 

</SubjectMatch>

</Subject> </Subjects> 

<Resources> <Resource> 

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match"> 

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">http://server.example.com/sensitive/.*

</AttributeValue> 

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/> 

</ResourceMatch> 

</Resource> </Resources> 

<Actions> <AnyAction/> </Actions> 

</Target> 
<Rule RuleId="AllowAllReads" Effect="Permit"> <Target> 

<Subjects> <AnySubject/> </Subjects> <Resources> <AnyResource/> </Resources> 
<Actions> <Action> <ActionMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:string -equal"> 

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">read</AttributeValue>
<ActionAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:action:action-id"/> 

</ActionMatch> </Action> </Actions> 
</Target> </Rule> 
<Rule RuleId="DenyOtherActions" Effect="Deny"/> 
<Obligations> <Obligation ObligationId="LogSuccessfulRead" FulfillOn="Permit"> 

<AttributeAssignment AttributeId="user" DataType="http://www.w3.org/2001/XMLSchema#anyURI">
urn:oasis:names:tc:xacml:1.0:subject:subject-id

</AttributeAssignment> 
<AttributeAssignment AttributeId="resource" DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:1.0:resource:resource-id
</AttributeAssignment> 

</Obligation> </Obligations> 
<Obligations> <Obligation ObligationId="LogInvalidAccess" FulfillOn="Deny"> 

<AttributeAssignment AttributeId="user" DataType="http://www.w3.org/2001/XMLSchema#anyURI">
urn:oasis:names:tc:xacml:1.0:subject:subject-id

</AttributeAssignment> 
<AttributeAssignment AttributeId="resource" DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:1.0:resource:resource-id
</AttributeAssignment> 
<AttributeAssignment AttributeId="action" DataType="http://www.w3.org/2001/XMLSchema#anyURI">

urn:oasis:names:tc:xacml:1.0:action:action-id
</AttributeAssignment> 

</Obligation> </Obligations> 
</Policy> 



XACML vs PPL
<?xml version="1.0" encoding="UTF-8"?> 

<Policy xmlns="urn:oasis:names:tc:xacml:1.0:policy" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="urn:oasis:names:tc:xacml:1.0:policy cs- xacml-schema-policy-01.xsd" PolicyId="ObligationPolicy" 
RuleCombiningAlgId="urn:oasis:names:tc:xacml:1.0:rule-combining-algorithm:permit- overrides"> 

<Target> 

<Subjects> <Subject> 

<SubjectMatchMatchId="urn:oasis:names:tc:xacml:1.0:function:rfc822Name- match"> 

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">users.example.com</AttributeValue>

<SubjectAttributeDesignator DataType="urn:oasis:names:tc:xacml:1.0:data-type:rfc822Name" AttributeId="urn:oasis:names:tc:xacml:1.0:subject:subject-id"/> 

</SubjectMatch>

</Subject> </Subjects> 

<Resources> <Resource> 

<ResourceMatch MatchId="urn:oasis:names:tc:xacml:1.0:function:regexp-string-match"> 

<AttributeValue DataType="http://www.w3.org/2001/XMLSchema#string">http://server.example.com/sensitive/.*

</AttributeValue> 

<ResourceAttributeDesignator DataType="http://www.w3.org/2001/XMLSchema#string" AttributeId="urn:oasis:names:tc:xacml:1.0:resource:resource-id"/> 

</ResourceMatch> 

</Resource> </Resources> 

<Actions> <AnyAction/> </Actions> 

</Target> 

subj email *@users.example.com ; res * ; act read attr * ; cond true; dec allow ‘log subj res act’;

subj * ; res * ; act *; cond true; dec deny ‘log subj res act’ ;



Type of Policies

• VO Policies
– Only of interest to VOs.
– Local sites do not need to take any special actions. In 

principle they do not need to know them.
• Site Policies

– Only of interest to local sites.
– VOs do not need to know them.

• Mixed Policies
– Policies that are of interest both to Local sites and 

VOs.
– Ban lists, Contractual agreements, etc…



Policy Examples by Type (PPL)
• VO Policy

– Users belonging to the CMS-Italia subgroup of CMS may submit 
a maximum of 100 jobs.

– subj attr /CMS/CMS-Italia ; obj * ; act submit ; cond user-submit-
number <= 100; dec allow ‘’;

• Site Policy
– Physical directory /disk6/cms is associated to published directory 

/data/cms.
– subj attr /CMS ; obj *; act write; cond dir=/data/cms; dec allow 

‘dir=/disk6/cms’;
• Mixed Policy

– User Vincenzo Ciaschini cannot submit jobs at CNAF.
– subj subject /C=IT/*/CN=Vincenzo Ciaschini/*; obj *.cnaf.infn.it; 

act submit; cond true; dec deny ‘’;



Flow Control: Policy Creation
• VO

– VO Admin inserts a new policy into PAT.
– PAT copies policy into PDP and PR, taking 

note of approval status with farms.
– PAT sends policy to PCI, which in turn sends 

it to Farm PCI.
• SITE

– Farm PCI inserts the received policy into a 
PAT queue, waiting for approval.

– Farm Admin reviews received policy and 
decides whether to accept or refuse it.

• If he accepts it, the policy is immediately 
communicated to his PDP and PR.

– Farm Admin sends the answer to his PCI, 
which communicates it to VO PCI.

• VO
– VO PCI receives answer from Farm PCI and 

communicates it to PAT.
– PAT updates PR and PDP with the 

information about policy acceptance received 
from the farm and alerts VO admin.
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Flow Control: Policy Enforcement
• The user submits a job to the RB.
• RB contacts HLR to get accounting information (space 

used, jobs, etc…)
• RB’s PEP contacts VO PBox to see if the user is 

allowed to execute an action.
• VO PBox answers, possibly along with a list of CE 

where the policies allow the user to submit jobs.
• If all goes well, the job is submitted to a CE.
• CE’s PEP contacts FARM PBox to verify that the user 

is allowed to submit a job.
• In case of a positive answer, CE contacts HLR to 

retract tokens.
• If latest operatoin went okay, the job is effectively 

submitted.
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NOTES

Without HLR, policies requiring a VO-wide view of the 
grid cannot be implemented.

If a user skips the RB to submit a job directly to CE, VO 
policies are still enforced by the CE, and so the user 
risks submitting on a farm where policies do not allow 
him to submit, and so the operation fails. 



Indicative Timeline

• Proposal: Here it is!
• Alpha release: late july 2004.
• Alpha testing and fixes: late july - late 

september 2004.
• Beta release: late december 2004.
• Beta testing and fixes: late december 2004 

- late march 2005.
• Release 1.0: late july 2005.



Group membership and pointers

• Home Page:
– INFNForge on 

http://infnforge.cnaf.infn.it/projects/pbox
• Group Members

– Ciaschini Vincenzo (ciaschini@cnaf.infn.it)
– Ferraro Andrea (andrea.ferraro@cnaf.infn.it)
– Rubini Gianluca (grubini@cnaf.infn.it)
– Zappi Riccardo (riccardo.zappi@cnaf.infn.it)

• External Collaborators
– Guarise Andrea (guarise@to.infn.it)
– Caltroni Andrea (andrea.caltroni@pd.infn.it)


