
OpenCL and the quest for portable 
performance  

Tim Mattson

Intel Labs



22

Disclaimer

• The views expressed in this talk are those of the 
speaker and not his employer.

• I am in a research group and know very little about 
Intel products.  So anything I say about them is 
not to be trusted.  



3

Top 500 supercomputers: total number of processors (1993-2011)

Source: the “June lists” from www.top500.org

Parallel Hardware Trends – part 1

0

1000000

2000000

3000000

4000000

5000000

6000000

7000000

8000000

9000000
Ja

n
-9

3

Ja
n
-9

4

Ja
n
-9

5

Ja
n
-9

6

Ja
n
-9

7

Ja
n
-9

8

Ja
n
-9

9

Ja
n
-0

0

Ja
n
-0

1

Ja
n
-0

2

Ja
n
-0

3

Ja
n
-0

4

Ja
n
-0

5

Ja
n
-0

6

Ja
n
-0

7

Ja
n
-0

8

Ja
n
-0

9

Ja
n
-1

0

Ja
n
-1

1

This is what the 

many core 

revolution looks 

like in HPC



Parallel Hardware Trends – part 2

GMCH
GPU

ICH

CPU
CPU

DRAM

GMCH = graphics memory control hub,   ICH = Input/output control hub       SOC = system on a chip

• A modern platform has:

– CPU(s)

– GPU(s)

– DSP processors

– … other?

• And System on a Chip (SOC) 
trends are putting this all onto 
one chip 

The future belongs to heterogeneous, many core SOC 
as the standard building block of computing



5

The many core challenge
 A harsh assessment …

 We have turned to multi-core chips not because of the success of our 
parallel software but because of our failure to continually increase 
CPU frequency.

 Result: a fundamental and dangerous mismatch
 Parallel hardware is ubiquitous. 

 Parallel software is rare 

 The Many Core challenge …

 Parallel software must become as common as parallel 
hardware

 Programmers need to make the best use of all the available 
resources from within a single program:

OpenCL is an industry standard attempt to address 
the many core challenge for heterogeneous systems



Origins of OpenCL

AMD

ATI

Merged, 

needed 

commonality 

across 

products

Nvidia
GPU vendor  -

wants to steel mkt 

share  from CPU

Intel
CPU vendor  -

wants to steel mkt 

share  from GPU

Wrote a 

rough draft 

straw man 

API

was tired of recoding 

for many core, GPUs.  

Pushed vendors to 

standardize.

Apple

Ericsson

Sony

Blizzard

Nokia

Khronos  

Compute 

group formed

Freescale

TI

IBM

+ many 

more

Dec 2008
Third party names are the property of their owners.



Agenda

• A brief overview of OpenCL

• OpenCL, the CPU and Performance portability

• The Future of OpenCL



OpenCL: a Standard for heterogeneous  computing

• Inspired by success with GPGPU programming, OpenCL is a 

standard that spans the full range of heterogeneous many 

core systems. 

• OpenCL became an important standard “on release” by virtue 

of the market coverage of the companies behind it.

Third party names are the property of their owners.

http://www.codeplay.com/
http://www.amd.com/
http://www.umu.se/umu/index_eng.html
http://www.gshark.com/


1212

The BIG idea behind OpenCL

•OpenCL execution model … execute a kernel at each point in a 
problem domain.

–E.g., process a 1024 x 1024 image with one kernel invocation 
per pixel or 1024 x 1024 = 1,048,576 kernel executions

void

trad_mul(int n, 

const float *a, 

const float *b, 

float *c)

{

int i;

for (i=0; i<n; i++)

c[i] = a[i] * b[i];

}

Traditional loops

kernel void

dp_mul(global const float *a, 

global const float *b, 

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

} // execute over “n” work-items

Data Parallel OpenCL



1313

An N-dimension domain of work-items

•Define an N-dimensioned index space that is “best” for 
your algorithm

– Global Dimensions:    1024 x 1024    (whole problem space)

– Local Dimensions: 128 x 128 (work group … executes 
together) 

1024

1
0

2
4

Synchronization between work-items

possible only within workgroups:

barriers and memory fences

Cannot synchronize outside 

of a workgroup



1414

To use OpenCL, you must

• Define the platform

• Execute code on the platform

• Move data around in memory

• Write (and build) programs



1515

OpenCL Platform Model 

• One Host + one or more Compute Devices

– Each Compute Device is composed of one or more 
Compute Units

– Each Compute Unit is further divided into one or more 
Processing Elements



1616

OpenCL Execution Model

•An OpenCL application runs on a host which 
submits work to the compute devices. 

–Work item: the basic unit of work on an 
OpenCL device.  

–Kernel: the code for a work item. Basically 
a C function

–Program: Collection of kernels and other 
functions (Analogous to a dynamic library)

–Context: The environment within which 
work-items executes … includes devices and 
their memories and command queues.

Queue Queue

Context

GPU CPU

•Applications queue kernel execution instances

–Queued in-order … one queue to a device

–Executed in-order or out-of-order depending on queue-type



1818

OpenCL Memory Model

Memory management is Explicit

You must move data from host -> global -> local 
… and back

•Private Memory

–Per work-item

•Local Memory

–Shared within a 
workgroup  

•Global/Constant 
Memory

–Visible to all workgroups

•Host Memory

–On the CPU

Workgroup

Work-Item

Compute  Device

Work-Item

Workgroup

Host

Private 
Memory

Private 
Memory

Local MemoryLocal Memory

Global/Constant Memory

Host Memory

Work-ItemWork-Item

Private 
Memory

Private 
Memory



1919

Programming kernels: 
the OpenCL C Language

•A subset of ISO C99

–But without some C99 features such as standard C99 
headers, function pointers, recursion, variable length arrays, 
and bit fields

•A superset of ISO C99 with additions for:

–Work-items and workgroups

–Vector types

–Synchronization

–Address space qualifiers

•Also includes a large set of built-in functions for 
image manipulation, work-item manipulation, 
specialized math routines, etc.



2020

Programming Kernels: Data Types
• Scalar data types

–char , uchar,  short, ushort, int, uint, long, ulong, float

–bool, intptr_t, ptrdiff_t, size_t, uintptr_t, void,  half (storage)

• Image types

–image2d_t, image3d_t, sampler_t

• Vector data types

–Vector lengths 2, 4, 8, & 16 (char2, ushort4, int8, float16, double2, …)

–Endian safe

–Aligned at vector length

–Vector operations and built-in functions

2 3 -7 -7

-7 -7 -7 -7int4 vi0 = (int4) -7;

0 1 2 3
int4 vi1 = (int4)(0, 1, 2, 3);

vi0.lo = vi1.hi;

int8 v8 = (int8)(vi0, vi1.s01, vi1.odd); 2 3 -7 -7 0 1 1 3

Double is an optional 

type in OpenCL 1.0



2121

Building Program objects

• The program object encapsulates:
– A context

– The program source/binary

– List of target devices and build options

• The Build process …  to create a program object
– clCreateProgramWithSource()

– clCreateProgramWithBinary()

Program
kernel void 

horizontal_reflect(

read_only image2d_t src,

write_only image2d_t dst) 

{

int x = get_global_id(0);  // x-coord

int y = get_global_id(1);  // y-coord

int width = get_image_width(src);  

float4 src_val = read_imagef(src, 

sampler,(int2)(width-1-x, y));  

write_imagef(dst, (int2)(x, y), src_val);

}

Compile for 

GPU

Compile for 

CPU

GPU

code

CPU

code

Kernel Code



2222

arg [0] 

value

arg [1] 

value

arg [2] 

value

arg [0] 

value

arg [1] 

value

arg [2] 

value

In

Order

Queue

Out of

Order

Queue

GPU

Context

__kernel void

dp_mul(global const float *a,

global const float *b,

global float *c)

{

int id = get_global_id(0);

c[id] = a[id] * b[id];

}

dp_mul

CPU program binary

dp_mul

GPU program binary

Programs Kernels

arg[0] value

arg[1] value

arg[2] value

Images Buffers

In

Order

Queue

Out of

Order

Queue

Compute Device

GPUCPU

dp_mul

Programs Kernels Memory Objects Command Queues

OpenCL and the Host Program

Third party names are the property of their owners.



2323

Vector Addition - Host Program

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, 
CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices  

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
0, NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, 
devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, 
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = 
clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, 
srcB, NULL);

memobjs[2] = 
clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL,NULL);

// create the program

program = clCreateProgramWithSource(context, 
1, &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, 
NULL, NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, 
NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, 
(void *) &memobjs[0], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, 
(void *)&memobjs[1], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, 
(void *)&memobjs[2], sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, 
kernel, 1, NULL, global_work_size, NULL, 0, 
NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, 
memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), 
dst, 0, NULL, NULL);



2424

Vector Addition - Host Program

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, 
CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices  

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
0, NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, 
devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, 
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = 
clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, 
srcB, NULL);

memobjs[2] = 
clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL,NULL);

// create the program

program = clCreateProgramWithSource(context, 
1, &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, 
NULL, NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, 
NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, 
(void *) &memobjs[0], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, 
(void *)&memobjs[1], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, 
(void *)&memobjs[2], sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, 
kernel, 1, NULL, global_work_size, NULL, 0, 
NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, 
memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), 
dst, 0, NULL, NULL);

Define platform and queues

Define Memory objects

Create the program

Build  the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as 
bad as it looks.



Agenda

• A brief overview of OpenCL

• OpenCL, the CPU and Performance portability

• The Future of OpenCL



Heterogeneous computing and the CPU

• Challenge  … how do you exploit the 

performance of modern CPU’s

– Multi-Core 

– SMT

– Vector Units

• Hypothesis:  OpenCL is an effective platform for programming a CPU

– OpenCL can handle multiple cores, multiple CPUs, and vector units.

– Uses a single programming model which simplifies programming.

– OpenCL provides a portable interface to vector instructions (SSE, AVX, etc). 

– The long term hope … Performance portable across CPU product lines and 

eventually between CPU and GPUs.



Matrix Multiplication: Sequential code

void mat_mul(int Mdim, int Ndim, int Pdim, float *A, float *B, float *C)

{

int i, j, k;

for (i=0; i<Ndim; i++){

for (j=0; j<Mdim; j++){

for(k=0;k<Pdim;k++){      //C(i,j) = sum(over k) A(i,k) * B(k,j) 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}

}

}

= + *

C(i,j) A(i,:)

B(:,j)

C(i,j)

Dot product of a row of A and a column of B for each element of C



Matrix Multiplication: OpenCL kernel  

__kernel mat_mul(

const int Mdim, const int Ndim, const int Pdim, 

__global float *A, __global float *B, __global float *C)

{

int i, j, k;

i = get_global_id(0);

j = get_global_id(1);

for(k=0;k<Pdim;k++){      //C(i,j) = sum(over k) A(i,k) * B(k,j) 

C[i*Ndim+j] += A[i*Ndim+k] * B[k*Pdim+j];

}

}



Matrix Multiplications Performance

• Results on an Apple laptop with an NVIDIA GPU and an Intel 

CPU.   Matrices are stored in global memory.

• No effort AT ALL was done to optimize.  This is naïve “out of 

the box” performance.

Device is  GeForce® 8600M GT  GPU from  NVIDIA  with a max 
of 4 compute units 
Device is  Intel® Core™2 Duo CPU     T8300  @ 2.40GHz 

3rd party names are the property of their owners.

Case MFLOPS

CPU:  Sequential C (not OpenCL) 167

GPU: C(i,j) per work item, all global 511

CPU: C(i,j) per work item, all global 744



OpenCL view of CoreTM i7

CoreTM i7 975

• 8 Compute Units (CU)

– Quad Core + SMT

• 4/8/16 Processing Elements (PE)  per CU

– 128bit XMM registers

– Data type determines # of elements…

• (32K L1 + 256K L2) Per PE, 8M L3 Local mem.

L1

L2

L1

L2

L1

L2

L1

L2

L3

OpenCL Platform Model*



OpenCL’s Two Styles of Data-Parallelism

• Explicit SIMD data parallelism:

– The kernel defines one stream of instructions

– Parallelism from using wide vector types

– Size vector types to match native HW width

– Combine with task parallelism to exploit multiple cores.

• Implicit SIMD data parallelism (i.e. shader-style):

– Write the kernel as a “scalar program”

– Use vector data types sized naturally to the algorithm

– Kernel automatically mapped to SIMD-compute-resources and 

cores by the compiler/runtime/hardware.

Both approaches are viable CPU options



Explicit Data Parallelism on the CPU

Kernel Execution             OCL Device

• Workitem is executed solely on a single 

compute unit (HW Thread)

• OpenCL Vector operations are mapped to 

SSE instructions

• Workgroup is executed on a single 

compute unit (HW Thread) 

• Kernel is executed over an N-D Range, 

which is divided into workgroups

• Several Workgroups run concurrently on 

all compute unit (HW threads)

…

…

……

…

L1

L2

L1

L2

L1

L2

L1

L2

L3

L1

L2

L1

L2

Workitem

Workgroup

N-D Range



Explicit SIMD data parallelism

• OpenCL as a portable interface to vector instruction sets.

– Block loops and pack data into vector types (float4, ushort16, etc).

– Replace scalar ops in loops with blocked loops and vector ops.

– Unroll loops, optimize indexing to match machine vector width

float a[N], b[N], c[N];

for (i=0; i<N; i++)

c[i] = a[i]*b[i];

<<< the above becomes >>>>

float4 a[N/4], b[N/4], c[N/4];

for (i=0; i<N/4; i++)

c[i] = a[i]*b[i];

Explicit SIMD data parallelism means you tune your code to the 
vector width and other properties of the compute device



* Results have been estimated based on internal Intel analysis and are provided for 
informational purposes only. Any difference in system hardware or software design or 

configuration may affect actual performance.

Explicit SIMD data parallelism: Case Study

1 work-item per core + loops  

Vectorize (block loops, pack 
into ushort8 and ushort16)  

Optimize vector indexing  

Unroll loops  

Hand-tuned SSE + 
Multithreading  

40%

186%

23%

% peak performance

3 Ghz dual core CPU   
pre-release version of OpenCL
Source: Intel Corp.

5%

• Video contrast/color optimization kernel on a dual core CPU.

Good news: OpenCL code 95% of hand-tuned SSE/MT perf.

Bad news: New platform, redo all those optimizations.

100%20%

5%

S
u

c
c
e
s
s
iv

e
 i

m
p

r
o

v
e
m

e
n

t



Implicit Data Parallelism on the CPU

• One workitem runs on a single SSE 

lane

• Workitems are packed to SSE 

registers as part of the OpenCL 

Compilation process

• Workgroup is executed on a compute 

unit (HW Thread)

• Kernel is executed over an N-D 

Range, which is divided to workgroups

• Several Workgroups run concurrently 

on all compute unit (HW threads)
…

L1

L2

L1

L2

L1

L2

L3

L1

L2

L1

L2

…

Workitem

Workgroup

N-D Range

Kernel Execution             OCL Device



Implicit vs. explicit SIMD: N-body Simulation

Given N bodies with an initial position xi and velocity vi for, the force 

fij on body i caused by body j is given by following (G is gravity):

where mi and mj are the masses of bodies i and j, respectively; rij = xj-xi

The acceleration is computed as ai = Fi/mi



NBody Performance

Results from Intel’s internal 

OpenCL implementation:*

• Implicit Data Parallelism

– “shader-style” code

– Benefit from multi-

core/SMT

• Explicit Data-Parallelism

– Hand tuned OpenCL C 

code

– OpenCL Explicit version 

is x25 faster than Naïve 

C *

– Explicit version is only 

14% slower than highly 

optimized code *

* Results measured on CoreTM i7 975, 3.3 GHz, 6GB DDR3
Results depends on the algorithm/code running



Agenda

• A brief overview of OpenCL

• OpenCL, the CPU and Performance portability

• The Future of OpenCL

Acknowledgements/disclaimer:  These slides are based on conversations 
with the OpenCL team at Intel.  They give you insights into our thinking 
about what needs to happen to OpenCL.   But we may never propose 
these constructs to Khronos or if we do, the actual proposals may look 
totally different.   



Context

GPU

CPU

// The Host program
device[0] = <<< A GPU >>>
device[1] = <<< A CPU >>>
context = clCreateContext(0, 2, &device_id, … );
Queue1 = clCreateCommandQueue(context, device_id[0], …);
Queue2 = clCreateCommandQueue(context, device_id[1], …);

////  build programs, set up kernels, manage memory

for(i=0;i=NwrkGPU;i++){
err = clEnqueueNDRangeKernel(Queue1, …);

}

for(i=0;i=NwrkCPU;i++){
err = clEnqueueNDRangeKernel(Queue2, …);

}

Balancing work between multiple devices
• Currently, the programmer must split the work explicitly between devices … 

managing work distribution, memory objects, and other details “by hand”. 

• Problem: you generally don’t know  the runtime-per-kernel so any “hand 

decomposition” is likely to be poor.



Context

GPU

CPU

// The Host program
device[0] = <<< A GPU >>>
device[1] = <<< A CPU >>>
context = clCreateContext(0, 2, &device_id, … );
Queue  = clCreateCommandQueue(context, 2, &device_id[0], …);

////  build programs, set up kernels, manage memory

for(i=0;i=NwrkGPU+NwrkCPU;i++){
err = clEnqueueNDRangeKernel(Queue, …);

}

Balancing work between multiple devices
• Solution : One queue that serves multiple devices

• Managing the memory objects can be difficult.   It would be nice to have a 

shared address space between the devices and the host



SVM: Shared Virtual Memory

• Shared Virtual Memory (SVM)
– An address space shared between the host and one or more devices so they 

can all work on same objects at one time and through pointers.

– Use  OpenCL’s current “object based” release consistency.

• Restricted to race free programs:

– Read-Read conflicts OK

– Read-Write conflicts OK with careful synchronization

– Write-write conflicts  not allowed

• Changes to OpenCL
– Add a new data access qualifier        __shared

– For example, kernel code might look like:

__kernel foo (__shared const float *list) {

__shared float *ptr;

//  do a bunch of stuff with ptr

}

SVM + multi-device 
queues would 

dramatically improve the 
ability to write 

performance portable 
programs in OpenCL.



… but OpenCL is still “broken”

• The tasking model in OpenCL is weak.

• Here is what we need:

– Tasks as the foundation of OpenCL

– A task is a unit of work plus a data environment

– We need a symmetric model:

– Kernels applied across an NDRange are just a mechanism to create a static set of 

tasks.

– Tasks can dynamically enqueue tasks … so tasks can create new tasks.

//  Enqueue to the same queue used by the parent task
event_t ev1 = enqueue(NULL) 

foreach(int i=0;i<512;i++) bar(i, buffer_B);

// Enqueue to a queue passed as a kernel arg to the parent task
event_t ev2= enqueue(after:ev1; on:otherDevCmdQ) 

foreach(int i=0;i<512;i++) bar2(i, buffer_B);



OpenCL code needs to be easier to write

• Define a high level interface to OpenCL to make it easier to 

work with:

– A source to source preprocessor  that takes simple high level code 

and outputs correct OpenCL.

– Define kernels with a keyword modifying a regular function … avoid 

the whole “load a kernel as string” step.

– Hide the complexity of the Host  platform and runtime APIs.

– Do everything as a source to source translator so integration with 

full OpenCL is well defined.

Goal: Make the most common cases easy



4545

Vector Addition - Host Program

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, 
CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices  

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
0, NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, 
devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, 
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = 
clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, 
srcB, NULL);

memobjs[2] = 
clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL,NULL);

// create the program

program = clCreateProgramWithSource(context, 
1, &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, 
NULL, NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, 
NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, 
(void *) &memobjs[0], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, 
(void *)&memobjs[1], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, 
(void *)&memobjs[2], sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, 
kernel, 1, NULL, global_work_size, NULL, 0, 
NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, 
memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), 
dst, 0, NULL, NULL);



4646

Vector Addition - Host Program

// create the OpenCL context on a GPU device

cl_context = clCreateContextFromType(0, 
CL_DEVICE_TYPE_GPU, NULL, NULL, NULL);

// get the list of GPU devices  

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
0, NULL, &cb);

devices = malloc(cb);

clGetContextInfo(context, CL_CONTEXT_DEVICES, 
cb, devices, NULL);

// create a command-queue

cmd_queue = clCreateCommandQueue(context, 
devices[0], 0, NULL);

// allocate the buffer memory objects

memobjs[0] = clCreateBuffer(context, 
CL_MEM_READ_ONLY | CL_MEM_COPY_HOST_PTR, 
sizeof(cl_float)*n, srcA, NULL);}

memobjs[1] = 
clCreateBuffer(context,CL_MEM_READ_ONLY | 
CL_MEM_COPY_HOST_PTR, sizeof(cl_float)*n, 
srcB, NULL);

memobjs[2] = 
clCreateBuffer(context,CL_MEM_WRITE_ONLY, 

sizeof(cl_float)*n, NULL,NULL);

// create the program

program = clCreateProgramWithSource(context, 
1, &program_source, NULL, NULL);

// build the program

err = clBuildProgram(program, 0, NULL, NULL, 
NULL, NULL);

// create the kernel

kernel = clCreateKernel(program, “vec_add”, 
NULL);

// set the args values

err  = clSetKernelArg(kernel, 0, 
(void *) &memobjs[0], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 1, 
(void *)&memobjs[1], sizeof(cl_mem));

err |= clSetKernelArg(kernel, 2, 
(void *)&memobjs[2], sizeof(cl_mem));

// set work-item dimensions

global_work_size[0] = n;

// execute kernel

err = clEnqueueNDRangeKernel(cmd_queue, 
kernel, 1, NULL, global_work_size, NULL, 0, 
NULL, NULL);

// read output array

err = clEnqueueReadBuffer(cmd_queue, 
memobjs[2], CL_TRUE, 0, n*sizeof(cl_float), 
dst, 0, NULL, NULL);

Define platform and queues

Define Memory objects

Create the program

Build  the program

Create and setup kernel

Execute the kernel

Read results on the host

It’s complicated, but most of this is “boilerplate” and not as 
bad as it looks.



What might the code look like?

__kernel void sum(__global int* in_bufA, __global int* in_bufB, 

__global int* out_res)

{   int tid = get_global_id(0);

out_result[tid] = in_bufA[tid] + in_bufB[tid];

}

int main(int argc, char* argv[])

{

oclInit();

cl_mem bufA=clCreateBuffer(GPU,CL_MEM_READ_WRITE,512,NULL,NULL);

cl_mem bufB=clCreateBuffer(GPU,CL_MEM_READ_WRITE,512,NULL,NULL);

cl_mem res =clCreateBuffer(GPU,CL_MEM_READ_WRITE,512,NULL,NULL);

AddDataToBuffer (bufA, 512);

AddDataToBuffer (bufB, 512);

cl_event sumFinished = oclDispatch [512] <GPU> sum (myFooVec, 

bufA, bufB, result);

PrintBuffer(result);

oclRelease();

}



Summary: Enhancements to OpenCL

• Multi-device queues for dynamic load balancing

• Shared virtual memory:

– To make sharing work across devices easier

– To support kernels operating on pointer based data structures

• Fix the tasking model to generalize OpenCL to a wider 

range of algorithms

• Create a higher level “single source” interface to OpenCL 

that automates the verbose stuff and makes OpenCL 

easier to write.

Acknowledgements/disclaimer:  These slides are based on conversations 
with the OpenCL team at Intel.  They give you insights into our thinking 
about what needs to happen to OpenCL.   But we may never propose 
these constructs to Khronos or if we do, the actual proposals may look 
totally different.   



Conclusion
• OpenCL is an effective platform for programming a CPU.

• Implicit SIMD code suggests a route to portably performant code

• Our OpenCL technology needs more work to achieve this full potential 
of implicit SIMD, but note ... we know this approach works since its 
based on the way shader compilers work today.

I’d rather be surfing


