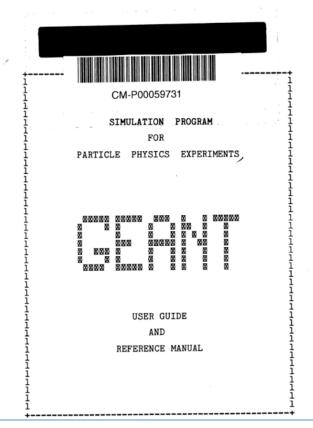


Geant 4

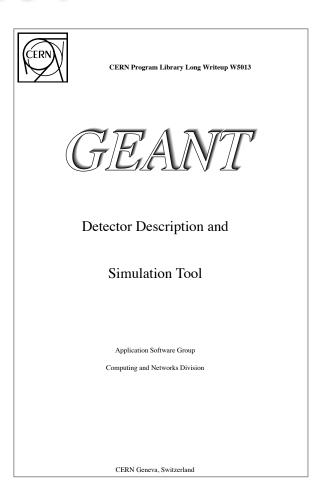
L'esperienza di 20 anni e l'orizzonte del 2020

Maria Grazia Pia


INFN Sezione di Genova

INFN CNAF

Bologna, 4-5 febbraio 2014


1974-1994

R. Brun R. Hagelberg M. Hansroul J.C. Lassalle CERN - DATA HANDLING DIVISION DD/78/2 January 1978

- GEANT, GEANT2: bare framework
- GEANT 3: 1982

EGS physics...

GEANT 3.21, March 1994 + GHEISHA, FLUKA, GCALOR

1993

"The main problem with GEANT 3 was that no documentation on its program design was available. Only, say, ten people in the world knew how it worked."

Additionally, GEANT 3 was written in FORTRAN, which is a procedural programming language.

The extremely complicated nature of the simulation code, and the relative lack of structure inherent in most procedural languages, made it impossible for general users to add new components to the program.

Takashi Sasaki, KEK http://legacy.kek.jp/intra-e/feature/2010/Geant4.html

e.g.~60 routines need to be modified in GEANT 3 to add a new geometrical shape

3

GEANT 3.20

CN Division Report, 1992

Together with this geometry, a new version of the graphics package has been developed which allows shadows, light processing and multiple light sources. All these developments will be introduced in GEANT version 3.20, which should be released at the end of 1993.

DRAFT DRAFT DRAFT DRAFT

THE NEW GEOMETRICAL MODELLER OF GEANT 3.20

Jouko Vuoskoski

CERN, Geneva

June 29, 1993

ABSTRACT

The new geometrical modeller in GEANT 3.20 is entirely new with respect to the previous versions of GEANT. The internal representation is constructed solid geometry (CSG) following the half-space approach. The half-spaces are bounded by polynomial surfaces limited to 2^{nd} order. The user interface will also be extended. The new modeller allows users to construct more complicated and more accurate detector models. It offers also better possibilities to exchange geometrical information with CAD-systems.

Applying STEP Principles to Product Models in High Energy Physics Research

M. Dach et al., Report TKK-F-A724

GEANT is a detector simulation program used in the design of detectors used in High Energy Physics (HEP) experiments. The simulation program has been developed at CERN by the HEP community and it is now in use in more than 600 research institutions in over 50 countries. Its applications are not limited to physics, but range from space science to medical research.

The GEANT version 3.20 to be released sometime in the future will have a new geometric modeler [9] which uses a constructive solid geometry (CSG) [10] approach. The internal geometric representation consists of half spaces. In GEANT a *solid object* composing a part of a detector is called a *volume*. Internally a volume is represented by a union of *caves* and a cave is represented by an intersection of half-spaces.

GEANT 3.20 was never released

MC93 Conference

STATUS AND FUTURE TRENDS OF THE GEANT SYSTEM

FEDERICO CARMINATI CERN 1211 Geneva 23 Switzerland

p. 45

ABSTRACT

The GEANT simulation system is undergoing a constant development thanks to the feed-back and collaboration of its very large community of users. Version 3.15 has been released almost an year ago and it can be considered quite stable. Version 3.16 will be released soon and it will contain several improvements, both in the physics and in graphics and user interface. Little has been done in this version on the geometry and on the program structure, in order to preserve as much as possible backward compatibility.

In parallel with these developments, a completely new GEANT geometrical modeller has been developed and is now in an advanced testing phase. This will be released at the end of this year with GEANT Version 3.20. Following a series of discussions held at CERN on the evolution of the CERN Program Library in the LHC era, an experiment has been launched to evaluate C++ and Object Oriented languages for detector simulation.

TOWARDS OBJECT-ORIENTED GEANT - ProdiG PROJECT -

pp. 329-338

YOSHINOBU TAKAIWA,

KATSUYA AMAKO, JUN-ICHI KANZAKI, and TAKASHI SASAKI KEK (National Laboratory for High Energy Physics) 1-1 Oho, Tsukuba, Ibaraki 305, Japan

ABSTRACT

A project towards object-oriented design and implementation of GEANT (ProdiG project) is now under consideration and this is a brief report of current status. Viewing GEANT as a general purpose detector simulation package, motivations for making it object-oriented and possible issues for this end are discussed. Then, a preliminary attempt of analyzing and designing a detector simulation program is given. Also is discussed the possibility and necessity of the worldwide collaboration for it.

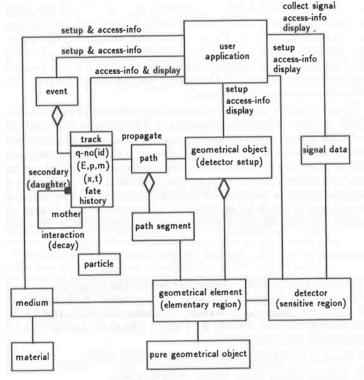
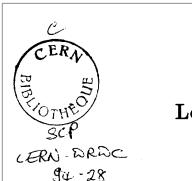



Figure 1: Class Diagram of Detector Simulation.

Steps into the future

CERN LIBRARIES, GENEVA

SC00000706

DRDC/94-28

Letter of intent to the DRDC

May 26, 1994

Proposal to CERN Detector R&D Committee

EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH

CERN/DRDC/94-29 DRDC / P58 11 August 1994

GEANT 4: an Object-Oriented toolkit for simulation in HEP

29 people, 19 institutes, 9 countries

RD44 (GEANT4)

GEANT 4: an Object-Oriented toolkit for simulation in HEP

SPOKESPERSON: Simone GIANI

Experiment secretariat e-mail: Grey.Book@cern.ch

Beam:	
Approved:	24-11-1994
	07-12-1995
	01-07-1997
	21-10-1997
Completed	14-12-1998
Finished	14-12-2008
Status:	Finished

Geant4 today

S. Agostinelli et al.

Geant4: a simulation toolkit

NIM A, vol. 506, no. 3, pp. 250-303, 2003

4597 citations

Most cited publication in:	Total
Nuclear Science and Technology	626356
Instruments and Instrumentation	
Particle and Fields Physics	267891
Most cited CERN publication	26077
Most cited INFN publication	48779

Many papers that use Geant4 do not cite it

ISI WoS

Nuclear Science & Technology Instruments & Instrumentation

GEANT4-a simulation toolkit

By: Agostinelli, S; Allison, J; Amako, K; et al.

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS

SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT Volume: 506 Issue: 3 Pages: 250-303

Published: JUL 1 2003

Full Text

View Abstract

2. A MONTE-CARLO COMPUTER-PROGRAM FOR THE TRANSPORTOR OF SNEP

By: BIERSACK, JP; HAGGMARK, LG

NUCLEAR INSTRUMENTS & METHODS Volume: 174 Issue: 1-2 Pages: 257-269 Sub 101 980

Full Text

3. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFE

By: Ravel, B; Newville, M

JOURNAL OF SYNCHROTRON RADIATION Volume: 12 Pages: 537-541 Part: 4 Published: JUL 2005

Full Text

View Abstract

4. ALGORITHMS FOR THE RAPID SIMULATION OF RUTHERFORD BACKSCATTERING SPECTRA

By: DOOLITTLE, LR

NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION B-BEAM INTERACTIONS WITH

MATERIALS AND ATOMS Volume: 9 Issue: 3 Pages: 344-351 Published: 1985

Full Text

5. WSXM: A software for scanning probe microscopy and a tool for nanotechnology

By: Horcas, I.; Fernandez, R.; Gomez-Rodriguez, J. M.; et al.

REVIEW OF SCIENTIFIC INSTRUMENTS Volume: 78 Issue: 1 Article Number: 013705 Published: JAN 2007

Times Cited: 4,597 (from Web of Science Core

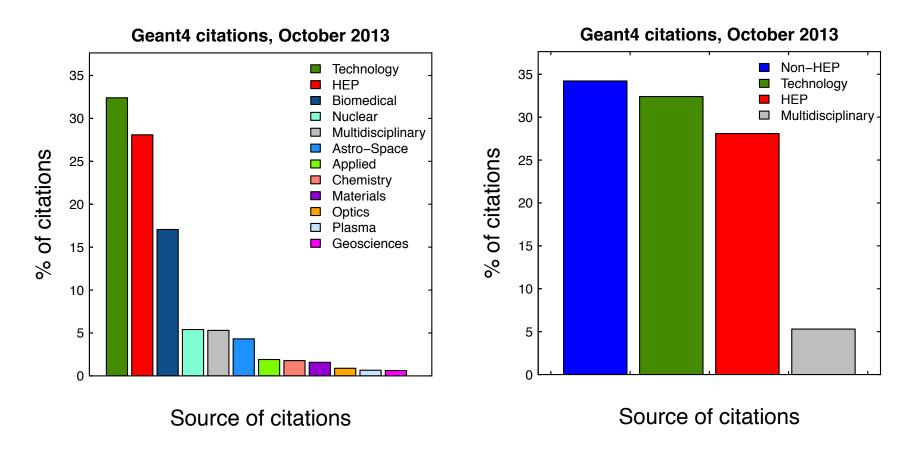
Collection)

Times Cited: 3,709

(from Web of Science Core Collection)

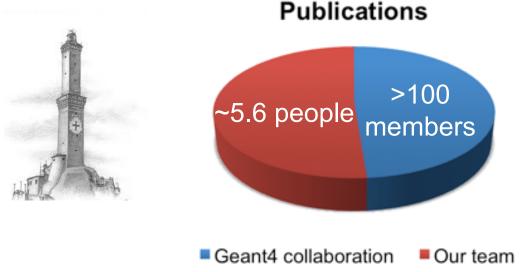
Times Cited: 2,177 (from Web of Science Core

(from Web of Science (Collection)


Times Cited: 2,153

(from Web of Science Core Collection)

Times Cited: 2,146


(from Web of Science Core Collection)

Who uses Geant4?

Based on Thomson-Reuters' Web of Science data

Geant4-related publications by Geant4 developers

Geant4 core, excluding applications (early 2013 statistics)

http://www.ge.infn.it/geant4/papers/

Geant4 low energy electromagnetic physics
Geant4 advanced examples
Geant4 distributed simulation
Geant4 scientometrics
Uncertainty Quantification
Statistical Toolkit

Overview of Geant4 functionality

What is Geant 4?

OO Toolkit

for the simulation of next generation HEP detectors

...of the current generation

...not only of HEP detectors

Born from **RD44**, 1994 – 1998 (R&D phase)

1st release: 15 December 1998

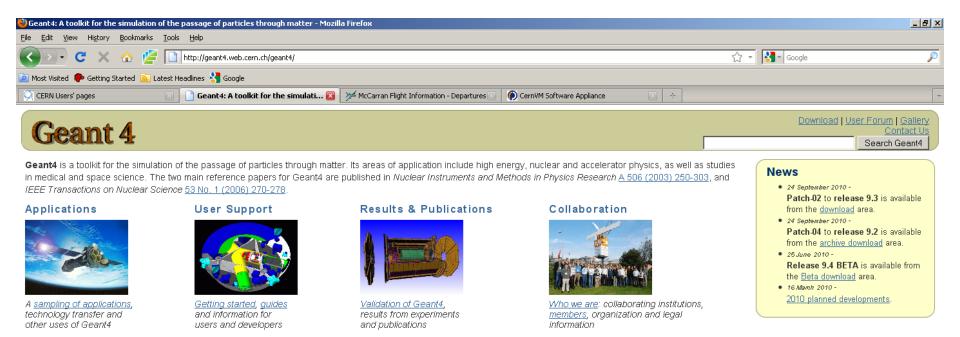
1-2 new releases/year since then

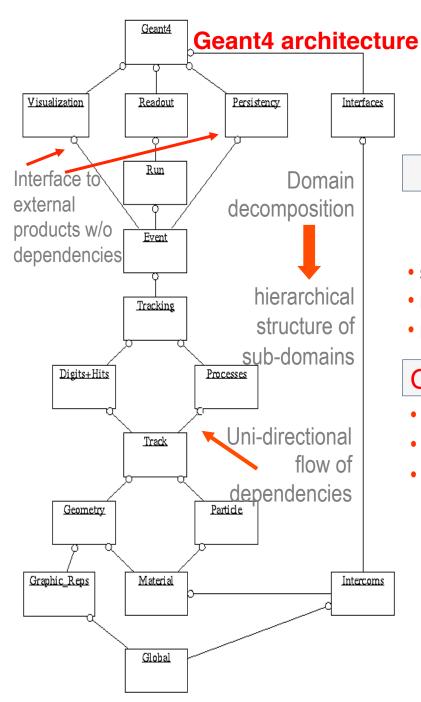
RD44 was also an experiment of

- distributed software production and management
- application of rigorous software engineering methodologies
- introduction of the object oriented technology in the HEP environment

RD44 strategic vision

OO technology


- Open to extension and evolution
 - new implementations can be added without changing existing code
- Robustness and ease of maintenance
 - protocols and well defined dependencies minimize coupling


Toolkit

- A set of compatible components
 - each component is specialised for specific functionality
 - each component can be refined independently
- Components can cooperate at any degree of complexity
- Providing (and using) alternative components is easy
- User applications can be customised as needed

Distribution

- Geant4 is open-source
- Freely available
 - Source code, libraries, associated data files and documentation can be downloaded from http://cern.ch/geant4
- User support provided on a best effort basis
 - User Forum: mutual support within the user community

Software Engineering

played a fundamental role in RD44

User Requirements

- formally collected
- systematically updated
- PSS-05 standard

spiral iterative approach

Software Process

- regular assessments and improvements (SPI process)
- monitored following the ISO 15504 model

Object Oriented methods

- OOAD
- use of CASE tools
- openness to extension and evolution
- contribute to the transparency of physics
- interface to external software without dependencies

commercial tools

Quality Assurance

- code inspections
- automatic checks of coding guidelines
- testing procedures at unit and integration level
- dedicated testing team

Use of Standards

de jure and de facto

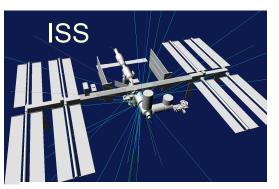
Geant4 functionality

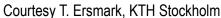
Geant4 provides tools for particle transport in matter:

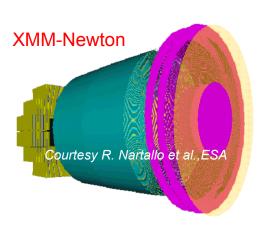
Run
 a collection of events that share the same detector conditions

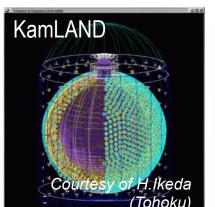
Event multiple events: pile-up

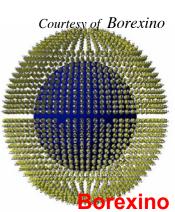
Tracking decoupled from physics

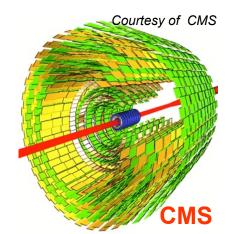

no tracking cuts, but **secondary production thresholds**

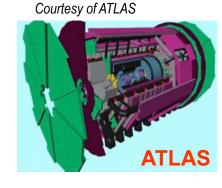

- Particles
- Modeling experimental setups
 - Geometry and materials
 - Detector response
- Physics
- Visualisation
- User interface
- Persistency
- Parallel execution

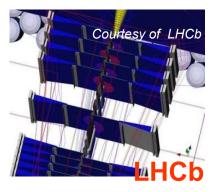

No time to review all Geant4 functionality in detail

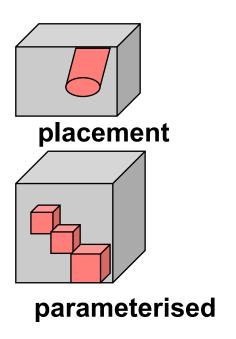

Geometry

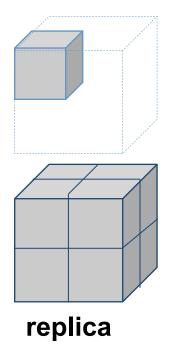

- Role
 - detailed detector description
 - efficient navigation
- Three conceptual layers
 - **Solid**: shape, size
 - LogicalVolume: material, sensitivity, daughter volumes, etc.
 - PhysicalVolume: position, rotation

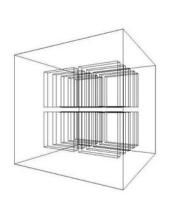




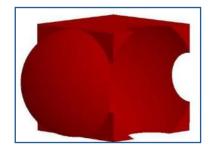


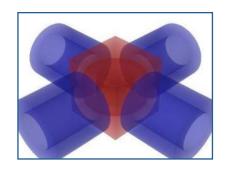

CSG (Constructed Solid Geometries)


simple solids


Solids • STEP extensions

- polyhedra, spheres, cylinders, cones, toroids, etc.
- **BREPS** (Boundary REPresented Solids)
 - volumes defined by boundary surfaces

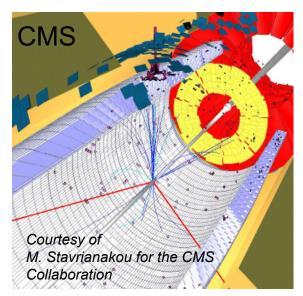

Physical Volumes

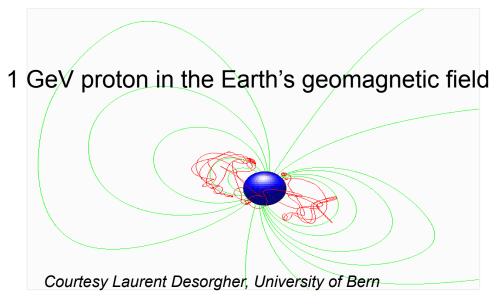


assembled

Boolean operations

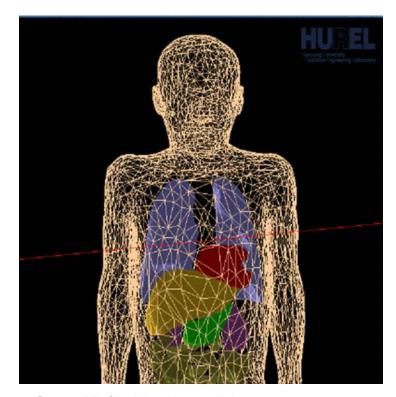
Transparent solids

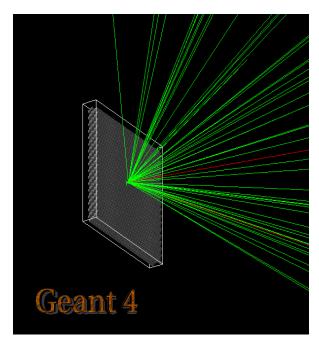

Materials


- Different kinds can be defined
 - isotopes
 - elements
 - molecules
 - compounds and mixtures

- Associated attributes:
 - temperature
 - pressure
 - state
 - density

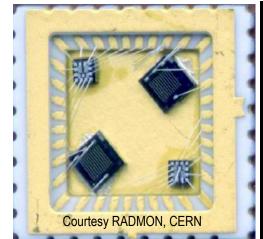
Electric and magnetic fields


of variable non-uniformity and differentiability



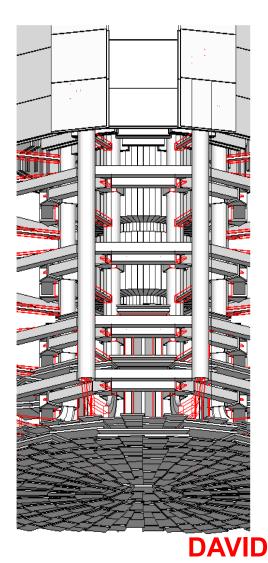
Not only large scale, complex detectors...

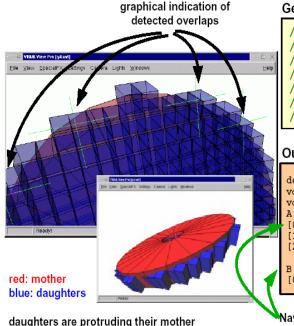
anthropomorphic phantoms



Courtesy Min Cheol Han, Hanyang Univ.

simple geometries


small scale components



Maria Grazia Pia, INFN Genova

One may also do it wrong...

Tools to detect badly defined geometries

Geant4 Macro:

/vis/scene/create
/vis/sceneHandler/create VRML2FILE
/vis/viewer/create
/olap/goto ECalEnd
/olap/grid 7 7 7
/olap/trigger
/vis/viewer/update

Output:

```
delta=59.3416
vol 1: point=(560.513,1503.21,-141.4)
vol 2: point=(560.513,1443.86,-141.4)
A -> B:
   [0]: ins=[2]    PVName=[NewWorld:0]    Type=[N] ...
[1]: ins=[0]    PVName=[ECalEndcap:0]    Type=[N] ...
[2]: ins=[1]    PVName=[ECalEndcap:0]    Type=[N] ...
[2]: ins=[2]    PVName=[NewWorld:0]    Type=[N] ...
```

NavigationHistories of points of overlap (including: info about translation, rotation, solid specs)

Physics

"It was noted that experiments have requirements for **independent**, **alternative physics models**. In Geant4 these models, *differently from the concept of packages*, allow the user to **understand** how the results are produced, and hence improve the **physics validation**. Geant4 is developed with a modular architecture and is the ideal framework where existing components are integrated and new models continue to be developed."

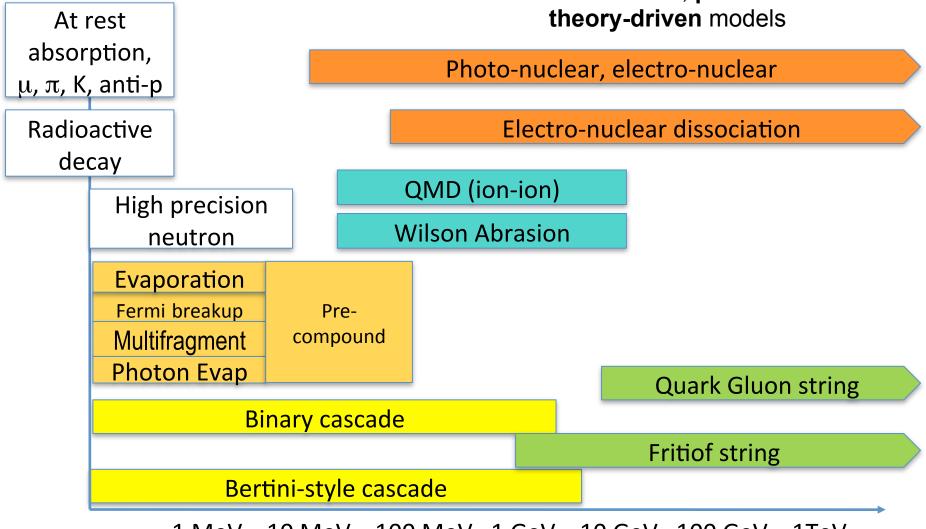
Minutes of LCB (LHCC Computing Board) meeting, 21/10/1997

RD44 physics vision and design

RD44 physics vision and design

- Ample variety of physics functionality
- Abstract interface to physics processes
 - Tracking **independent** from physics
- Open system
 - Users can easily create and use their own models
- Distinction between processes and models
 - often multiple models for the same physics process
 - complementary/alternative

Electromagnetic physics


- electrons and positrons
- photons (including optical photons)
- muons
- charged hadrons
- ions
- ullet Comparable to GEANT 3 already in 1997 α release
- Further extensions facilitated by OO technology
- High energy extensions
 - Motivated by LHC experiments, cosmic ray experiments...
- Low energy extensions
 - motivated by space and medical applications, dark matter and ν experiments, antimatter spectroscopy, radiation effects on components etc.
- Alternative models for the same process

- Multiple scattering
- Bremsstrahlung
- Ionisation
- Annihilation
- Photoelectric effect
- Compton scattering
- Rayleigh scattering
- γ conversion
- Synchrotron radiation
- Transition radiation
- Cherenkov
- Refraction
- Reflection
- Absorption
- Scintillation
- Fluorescence
- Auger emission

Hadronic physics

Ample variety of models

- Alternative/complementary
- Data-driven, parameterised and

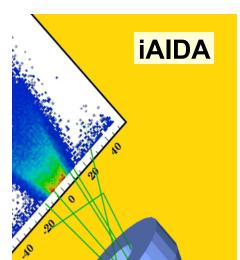
10 MeV 100 MeV 1 GeV 10 GeV 100 GeV 1TeV 1 MeV

Other features

- Primary event generation
 - some general purpose tools provided in the toolkit
- Particles
 - all PDG data and more for specific Geant4 use, like ions
- Hits & Digitization
 - to describe detector response
- Event biasing
- Fast simulation
- Persistency

No time to review them in detail

Interface to external tools


Through abstract interfaces (when they exist...)

→ No dependency

Similar approach

- (G)Ul
- Persistency
- [Analysis]

Visualisation

- Detector geometry
- Particle trajectories
- Hits in detectors

Drivers

DAWN

OpenGL

- OPACS
- OpenInventor
- HepRep

Postscript

VRML...

User interface

- Several implementations
- Command-line
 - batch and terminal
- GUIs
 - X11/Motif, GAG, MOMO, OPACS...
- Automatic code generation for geometry and physics through a GUI
 - GGE (Geant4 Geometry Editor)
 - GPE (Geant4 Physics Editor)

Toolkit + User application

- Geant4 is a toolkit
 - i.e. one cannot "run" Geant4 out of the box
 - One must write an application, which uses Geant4 tools
- Consequences
 - There is no such concept as "Geant4 defaults"
 - One must provide the necessary information to configure one's simulation
- The user must choose which Geant4 tools to use
 - To describe the experimental scenario
 - To input primary particles
 - To select physics processes and models, to set secondary production thresholds
- Geant4 tools for user interaction are base classes
 - Abstract base classes (detector construction, physics, primary generation)
 - Concrete base classes (with *virtual* dummy methods) for optional actions
- Guidance: examples are distributed with Geant4

GATE

Simulations of Preclinical and Clinical Scans in Emission Tomography, Transmission Tomography and Radiation Therapy

GAMOS

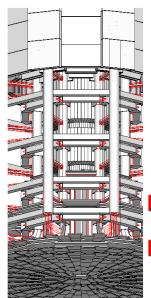
Geant4-based Architecture for Medicine-Oriented Simulations

独立行政法人科学技術振興機構(JST) 戦略的基礎研究推進事業(CREST) 「シミュレーション技術の革新と実用化基盤の構築」研究領域

高度放射線医療のためのシミュレーション基盤の開発

研究代表者 高エネルギー加速器研究機構 計算科学センター 教授 佐々木 節

GRAS - Geant4 Radiation Analysis for Space


Introduction

GRAS is a Geant4-based tool that deals with common radiation analyses types (TID, NIEL, fluence, SEE, path length, charge deposit, dose equivalent, equivalent dose, ...) in generic 3D geometry models.

QinetiQ

MUlti-LAyered Shielding SImulation Software (MULASSIS)

The user must implement a class derived from **G4VUserPhysicsList**

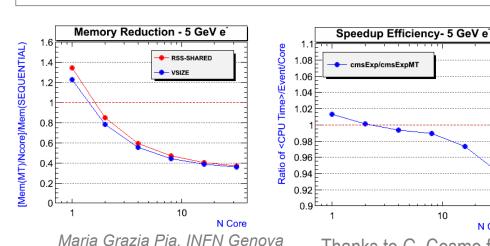
to configure the physics for his/her application

No DAVID for physics!

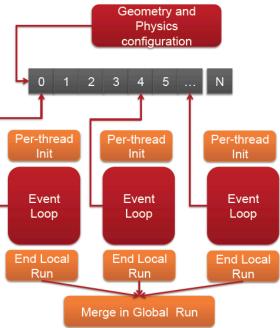
- Automated tools to detect badly defined geometries
- No such tools to detect badly defined physics!

Knowledge of the **capabilities** and **accuracy** of Geant4 physics options is essential to select the most appropriate ones for an experimental application

Geant4 physics validation



Parallel execution


- Activity since early Geant4 releases
- Multi-threading released in Geant4 10.0
 - Event-level parallelism

Each worker thread proceeds independently

- Initializes its state from a master thread
- Identifies its part of the work (events)
- Generates hits in its own hits-collection
- Uses thread-private objects and state
- Shares read-only data structures (e.g. geometry, cross-sections, ...)
- Has its own read-write part in a few 'shared/split' objects

No time to show detailed results

Further benchmarks

would be useful

Perspectives

All done?

Perspectives for the next 20 years...

- Reviving sound software methods
- Geant4 validation
- Detector simulation
- New experimental challenges
 - Beyond IPA and IA
 - Multi-scale simulation
- Computational resources
- Uncertainty Quantification
 - Predictive simulation

largely inter-related

Software

If it stinks, change it.

Grandma Beck, discussing child-rearing philosophy

Post-RD44 electromagnetic software

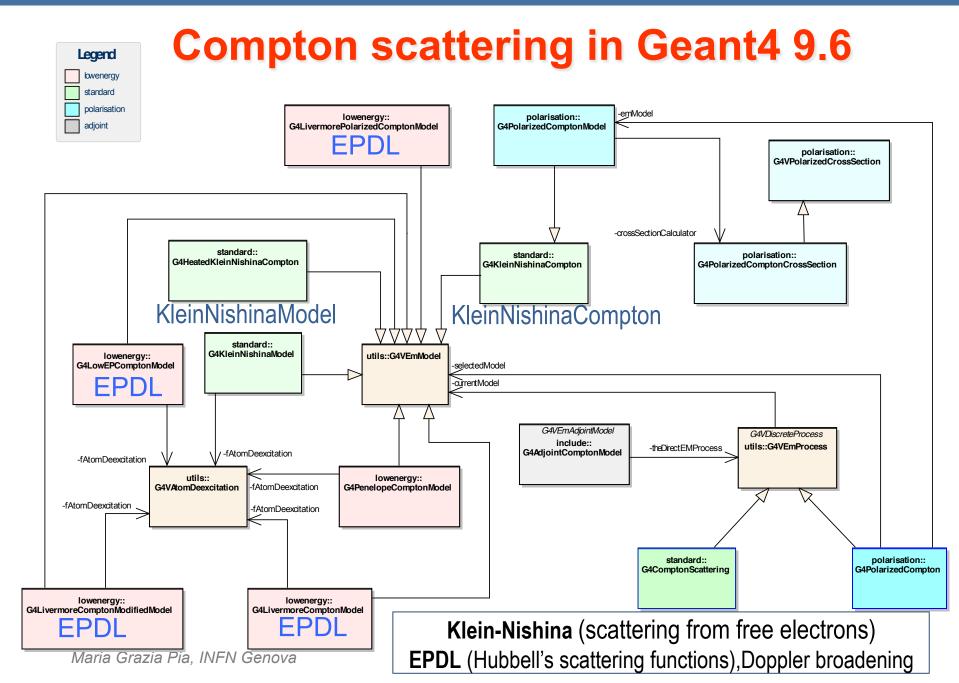
Coupling

total cross section

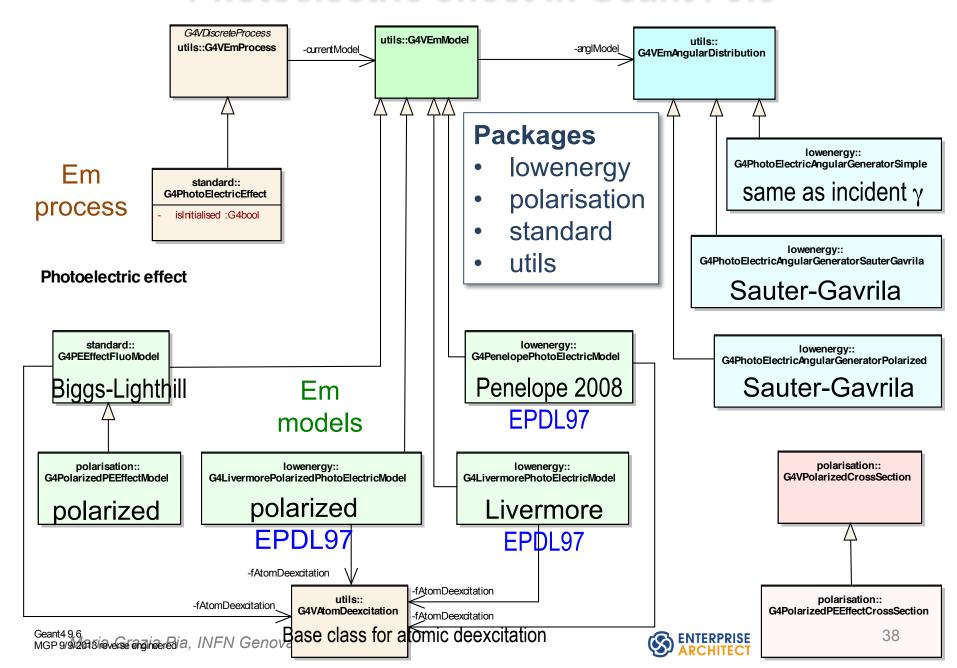
whether a process occurs

final state generation

how a process occurs


Dependencies

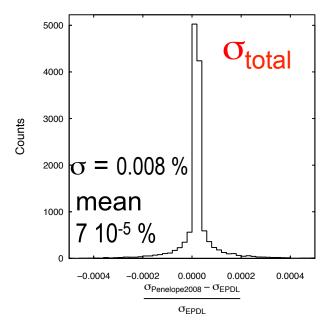
on other parts of the software


One needs a geometry (and a full scale application) to test a cross section

Difficult to test → no testing often

Reverse engineered No UML diagrams exist No design peer reviews

Photoelectric effect in Geant4 9.6



Duplication

Number one in the stink parade is duplicated code physics

Two Geant4 models: different code, identical underlying physics content (it used to be different physics)

Photon elastic scattering total cross section

"Livermore"	Penelope	
EPDL97	EPDL97	Efficiency w.r.t. experiment
0.38 ± 0.06	0.38 ± 0.06	σχροιιιιστικ

Burden on

Code bloat

- Software design
- Maintenance
- User support

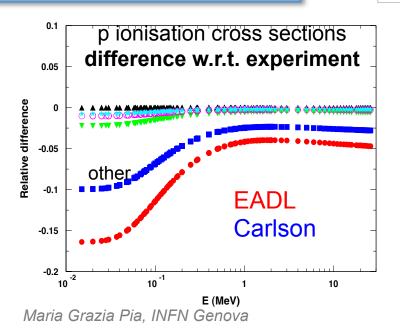
Unnecessary complexity

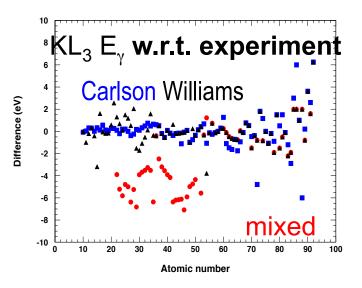
Duplication

Number one in the stink parade is duplicated code

numbers

- 1. Bearden & Burr (1967)
- Carlson
- 3. EADL
- 4. Sevier
- 5. Tol 1978 (Shirley)
- 6. Tol 1996 (Larkins)
- 7. Williams

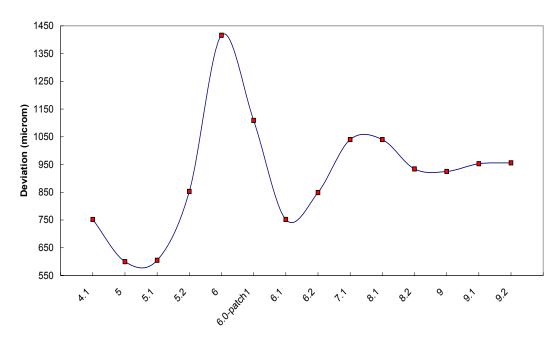

Atomic binding energies


Geant 4 {Carlson + Williams

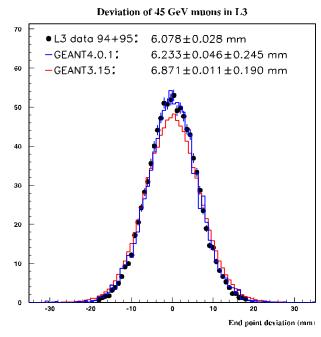
Vacuum Fermi level

Evaluation of Atomic Electron Binding Energies for Monte Carlo Particle Transport

Maria Grazia Pia, Hee Seo, Matej Batic, Marcia Begalli, Chan Hyeong Kim, Lina Quintieri, and Paolo Saracco



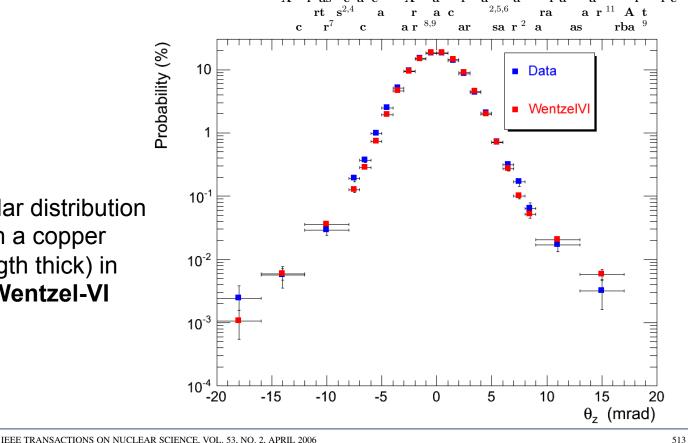
XRF


Change management

Traceability Test

100 GeV muons, 1 m thick iron Lateral deviation at end point

Geant4 version



P. Arce and M. Wadhwa, Deviation in matter of 45 GeV muons in GEANT3 and GEANT4. A comparison with L3 data. CMS Note 2000/16, 2000

Muons

Geant4 electromagnetic physics for the LHC and other HEP applications Proc. CHEP 2010

Muon scattering angular distribution for 7.3 Gev/c muon on a copper target (1 radiation length thick) in comparison with the **Wentzel-VI** MSC model.

Comparison with experimental data limited to stopping power in two materials

Geant4 Simulation of Production

and Interaction of Muons

A. G. Bogdanov, H. Burkhardt, V. N. Ivanchenko, S. R. Kelner, R. P. Kokoulin, M. Maire, A. M. Rybin, and L. Urban

High energy extensions based on theoretical models (PeV scale): data?

software changes...

What you validated yesterday, is still valid today?

³⁹⁸Best Student paper, IEEE NSS 2007

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 2, APRIL 2009

Validation of Geant4 Low Energy Electromagnetic Processes Against Precision Measurements of Electron Energy Deposition

Anton Lechner, Maria Grazia Pia, and Manju Sudhakar

2934

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013

Validation of Geant4 Simulation of Electron Energy Deposition

Matej Batič, Gabriela Hoff, Maria Grazia Pia, Paolo Saracco, and Georg Weidenspointner

How does it look like 4 years later?

Geant4 physics validation

What is what

IEEE STANDARDS ASSOCIATION

IEEE

IEEE Standard for System and Software Verification and Validation

IEEE Standard 1012

IEEE Computer Society

Sponsored by the Software & Systems Engineering Standards Committee (C/S2ESC)

3 Park Avenue New York, NY 10016-5997 IEEE Std 1012™-2012 (Revision of IEEE Std 1012-2004)

Verification

Validation

Calibration

Conforms to

- **ISO/IEC 15288** (IEEE Std 15288) Systems and Software Engineering
 - System Life Cycle Processes
- **ISO/IEC 12207** (IEEE Std 12207) Systems and Software Engineering
 - Software Life Cycle Processes
- **IEEE Std 1074** IEEE Standard for Developing a Software Project Life Cycle Process

Verification

- A. The process of evaluating a system or component to determine whether the products of a given development phase satisfy the conditions imposed at the start of that phase.
- B. The process of providing objective evidence that the system, software, or hardware and its associated products **conform to requirements** (e.g., for correctness, completeness, consistency, and accuracy) for all life cycle activities during each life cycle process (acquisition, supply, development, operation, and maintenance); satisfy standards, practices, and conventions during life cycle processes; and successfully complete each life cycle activity and satisfy all the criteria for initiating succeeding life cycle activities.

e.g. in the context of Monte Carlo simulation

Requirement:

Compton scattering cross section shall be described by the Klein-Nishina formula

Verification: the software calculates

$$\frac{d\sigma_{KN}(\theta)}{d\Omega} = \frac{r_e^2}{2} [1 + k(1 - \cos\theta)]^{-2} \left[1 + \cos^2\theta + \frac{k^2(1 - \cos\theta)^2}{1 + k(1 - \cos\theta)} \right]$$

consistently, correctly, with adequate numerical precision...

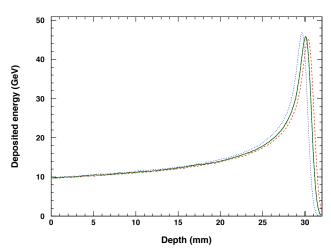
Validation

- A. The process of evaluating a system or component during or at the end of the development process to determine whether it satisfies specified requirements.
- B. The process of providing evidence that the system, software, or hardware and its associated products satisfy requirements allocated to it at the end of each life cycle activity, solve the right problem (e.g., correctly model physical laws, implement business rules, and use the proper system assumptions), and satisfy intended use and user needs.

In the context of Monte Carlo simulation

consistency with experimental measurements

e.g. does the Klein-Nishina formula reproduce measured differential cross sections of photon inelastic scattering?


Calibration

AKA "tuning"

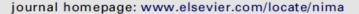
 The process of improving the agreement of a code calculation with respect to a chosen set of benchmarks through the adjustment of parameters implemented in the code

- Calibration is not validation
 - Validation is the process of confirming that the predictions of a code adequately represent measured physical phenomena
- T. G. Trucano et al., **Calibration, validation, and sensitivity analysis: What's what**, *Reliability Eng. & System Safety*, vol. 91, no. 10-11, pp. 1331-1357, 2006
- M. G. Pia et al, **Physics-related epistemic uncertainties of proton depth dose simulation**, *IEEE Trans. Nucl. Sci.*, vol. 57, no. 5, pp. 2805-2830, 2010

What is NOT validation

- Comparison of simulations with different Monte Carlo codes
 - Or comparison of different physics models in the same Monte Carlo system
- Comparison of simulation with theory
- Comparison with non-pertinent experimental data
- Calibration

Oenology


Mozart opera

ELSEVIER

Contents lists available at ScienceDirect

Nuclear Instruments and Methods in Physics Research A

Validation of the Geant4 electromagnetic photon cross-sections for elements and compounds

G.A.P. Cirrone ^a, G. Cuttone ^a, F. Di Rosa ^a, L. Pandola ^{b,*}, F. Romano ^a, Q. Zhang ^{a,c,**}

Comparison to theoretical data libraries NOT validation!

cited in

Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.898-903 (2011)

REVIEW

"After the migration to common design a new **validation** of photon cross sections versus various databases was published²⁶⁾ which demonstrated general good agreement with the data for both the Standard and Low-energy models."

Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces

Vladimir IVANCHENKO^{1,2,3*}, John APOSTOLAKIS¹, Alexander BAGULYA⁴, Haifa Ben ABDELOUAHED⁵, Rachel BLACK⁶, Alexey BOGDANOV⁷, Helmut BURKHARD¹, Stéphane CHAUVIE⁸, Pablo CIRRONE⁹, Giacomo CUTTONE⁹, Gerardo DEPAOLA¹⁰, Francesco Di ROSA⁹, Sabine ELLES¹¹, Ziad FRANCIS¹², Vladimir GRICHINE⁴, Peter GUMPLINGER¹³, Paul GUEYE⁶, Sebastien INCERTI¹⁴, Anton IVANCHENKO¹⁴, Jean JACQUEMIER¹¹, Anton LECHNER^{1,15}, Francesco LONGO¹⁶, Omrane KADRI⁵, Nicolas KARAKATSANIS¹⁷, Mathieu KARAMITROS¹⁴, Rostislav KOKOULIN⁷, Hisaya KURASHIGE¹⁸, Michel MAIRE^{11,19}, Alfonso MANTERO²⁰, Barbara MASCIALINO²¹, Jakub MOSCICKI¹, Luciano PANDOLA²², Joseph PERL²³, Ivan PETROVIC⁹, Aleksandra RISTIC-FIRA⁹, Francesco ROMANO⁹, Giorgio RUSSO⁹, Giovanni SANTIN²⁴, Andreas SCHAELICKE²⁵, Toshiyuki TOSHITO²⁶, Hoang TRAN¹⁴, Laszlo URBAN¹⁹, Tomohiro YAMASHITA²⁷ and Christina ZACHARATOU²⁸

Comparisons of Monte Carlo codes

Phys. Med. Biol. 56 (2011) 811-827

doi:10.1088/0031-9155/56/3/017

Comparison of GATE/GEANT4 with EGSnrc and MCNP for electron dose calculations at energies between 15 keV and 20 MeV

Phys. Med. Biol. 57 (2012) 1231-1250

doi:10.1088/0031-9155/57/5/1231

Comparison of nanodosimetric parameters of track structure calculated by the Monte Carlo codes Geant4-DNA and PTra Phys. Med. Biol. 57 (2012) 6381-6393

doi:10.1088/0031-9155/57/20/6381

Comparison of MCNPX and Geant4 proton energy deposition predictions for clinical use

Applied Radiation and Isotopes 83 (2014) 137-141

Dose point kernels in liquid water: An intra-comparison between GEANT4-DNA and a variety of Monte Carlo codes

C. Champion ^{a,*}, S. Incerti ^a, Y. Perrot ^b, R. Delorme ^c, M.C. Bordage ^d, M. Bardiès ^e, B. Mascialino ^f, H.N. Tran ^a, V. Ivanchenko ^g, M. Bernal ^h, Z. Francis ⁱ, J.-E. Groetz ^j, M. Fromm ^j, L. Campos ^k

Comparison of

and

Comparison of GEANT4 very low energy cross section models with experimental data in water

S. Incerti, A. Ivanchenko, M. Karamitros, A. Mantero, P. Moretto, H. N. Tran, B. Mascialino, C. Champion, V. N. Ivanchenko, M. A. Bernal, Z. Francis, C. Villagrasa, G. Baldacchino, P. Guèye, R. Capra, P. Nieminen, and C.

Zacharatou

Citation: Medical Physics 37, 4692 (2010); doi: 10.1118/1.3476457

Simulation models: **liquid water** Experimental data: **water vapour**

Validation is holistic

One has to validate the entire calculation system

Including:

- User
- Computer system
- Problem setup
- Running
- Results analysis

An inexperienced user can easily get wrong answers out of a good code in a valid régime

Columbia Space Shuttle disaster

The Columbia Space Shuttle wing failed during re-entry due to hot gases entering a portion of the wing damaged by a piece of foam that broke off during launch

NASA Columbia Shuttle Accident Report

Boeing did an analysis with the CRATER code (designed to study the effects of micrometeorite impacts, validated only for projectiles less that 1/400 the size and mass of the piece of foam that struck the wing), did not use a code like LS-DYNA that was the industry standard for assessing impact damage

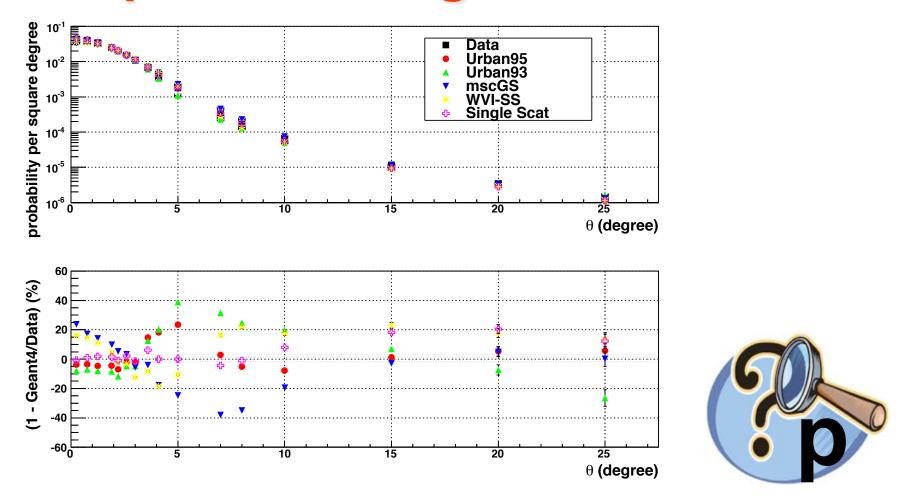
What is validated

- Validation of the "ingredients" of Geant4
 - Foundation of Geant4 physics models
 - Cross sections (total, partial, differential)
- coverage! angular distributions, secondary particle energy spectra etc.
 - Modeling assumptions
- Validation of simulated observables in use cases
 - Largely represented in the literature
 - Often qualitative only
 - Resulting from Geant4 + user application
 - Often lacking traceability (e.g. no configuration documentation)

Agreement Good agreement **Excellent agreement** Satisfactory agreement

- Comparison of simulation and experimental data in the literature mainly rests on
 - qualitative visual appraisal of figures
 - indicators (%) deprived of any statistical relevance
- Statistics is the mathematical foundation of Monte Carlo validation
- Rigorous statistical methods assess
 - Whether a simulation model is consistent with nature
 - Whether different simulation models produce (or do not produce) equivalent results in terms of compatibility with experiment

Conference papers


- J. Apostolakis et al., Recent Progress of Geant4 Electromagnetic Physics and Readiness for the LHC Start, XII Workshop Advanced Computing and Analysis Techniques in Physics Research (ACAT), 2008
- J. Apostolakis et al., Validation and verification of Geant4 standard electromagnetic physics, *J. Phys.: Conf. Series* 219 (2010) 032044 (CHEP 2009)
- A. Schälicke et al., Geant4 electromagnetic physics for the LHC and other HEP applications, J. Phys.: Conf. Series 331 (2011) 032029 (CHEP 2010)
- V. Ivanchenko et al., Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces, *Progr. Nucl. Sci. Technol.*, 2 (2011) 898-903 (SNA+Monte Carlo 2010)
- J. Allison et al., Geant4 electromagnetic physics for high statistic simulation of LHC experiment, J. Phys.: Conf. Series, 396 (2012) 022013 (CHEP 2012)

An example:

"The Urban93 MSC model was introduced and validated within Geant4 release 9.3 and made default in Geant4 release 9.4. With this model simulation results for low Z materials have improved. In general the accuracy of the Urban model is of the order of a few percent, sufficient for most HEP applications."

Multiple scattering

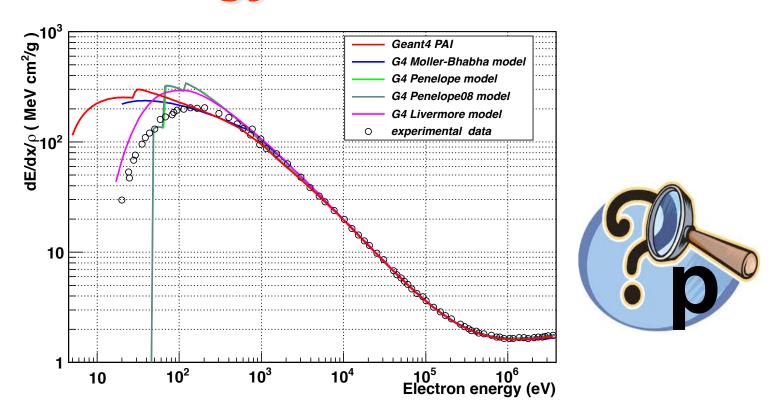

J. Allison et al., Geant4 electromagnetic physics for high statistic simulation of LHC experiment, J. Phys.: Conf. Series, 396 (2012) 022013

Figure 4. Comparison of different Geant4 MSC model predictions and experimental data [23] for 15.7 MeV electrons scattering off 9.68 um Gold foil: angular distribution (top); Monte Carlo over data (bottom). Urban model 95 and the single scattering model provides overall better agreement with the data.

J. Allison et al., Geant4 electromagnetic physics for high statistic simulation of LHC experiment, J. Phys.: Conf. Series, 396 (2012) 022013

Electron energy loss

Figure 5. Electron mean energy loss in CO₂ vs. electron energy: points are data [30], solid lines - different Geant4 models. Moller-Bhabha and PAI model follow the date down to 100 eV. Below 200 eV Penelope and Livermore models show effects caused by the treatment of atomic shell effects.

PROCEEDINGS OF SCIENCE

V. Ivanchenko et al., Recent **Progress** of Geant4 Electromagnetic Physics and Readiness for the LHC Start, XII Advanced Computing and Analysis Techniques in Physics Research, Erice, Italy, 3-7 November 2008

Progress in NUCLEAR SCIENCE and TECHNOLOGY, Vol. 2, pp.898-903 (2011)

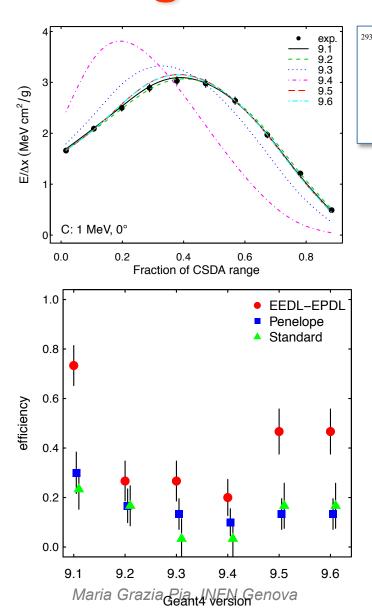
REVIEW

SNA+Monte Carlo 2010

Recent Improvements in Geant4 Electromagnetic Physics Models and Interfaces

Vladimir IVANCHENKO^{1,2,3*}, John APOSTOLAKIS¹, Alexander BAGULYA⁴, Haifa Ben ABDELOUAHED⁵, Rachel BLACK⁶, Alexey BOGDANOV⁷, Helmut BURKHARD¹, Stéphane CHAUVIE⁸, Pablo CIRRONE⁹, Giacomo CUTTONE⁹, Gerardo DEPAOLA¹⁰, Francesco Di ROSA⁹, Sabine ELLES¹¹, Ziad FRANCIS¹², Vladimir GRICHINE⁴, Peter GUMPLINGER¹³, Paul GUEYE⁶, Sebastien INCERTI¹⁴, Anton IVANCHENKO¹⁴, Jean JACQUEMIER¹¹, Anton LECHNER^{1,15}, Francesco LONGO¹⁶, Omrane KADRI⁵, Nicolas KARAKATSANIS¹⁷, Mathieu KARAMITROS¹⁴, Rostislav KOKOULIN⁷, Hisaya KURASHIGE¹⁸, Michel MAIRE^{11,19}, Alfonso MANTERO²⁰, Barbara MASCIALINO²¹, Jakub MOSCICKI¹, Luciano PANDOLA²², Joseph PERL²³, Ivan PETROVIC⁹, Aleksandra RISTIC-FIRA⁹, Francesco ROMANO⁹, Giorgio RUSSO⁹, Giovanni SANTIN²⁴, Andreas SCHAELICKE²⁵, Toshiyuki TOSHITO²⁶, Hoang TRAN¹⁴, Laszlo URBAN¹⁹, Tomohiro YAMASHITA²⁷ and Christina ZACHARATOU²⁸

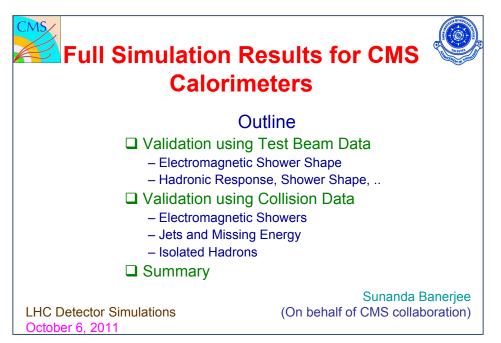
RADECS 2011 Proceedings - PA-19

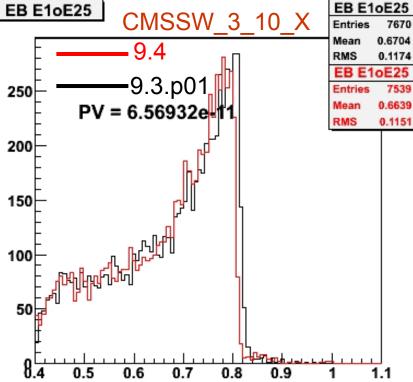

115

New Geant4 Model and Interface Developments for Improved Space Electron Transport Simulations: First results

John Allison, Juan Cueto, Vladimir Grichine, Alexander Howard, Sergio Ibarmia, Vladimir Ivanchenko, Michel Maire, Giovanni Santin and Laszlo Urban

Negative improvements

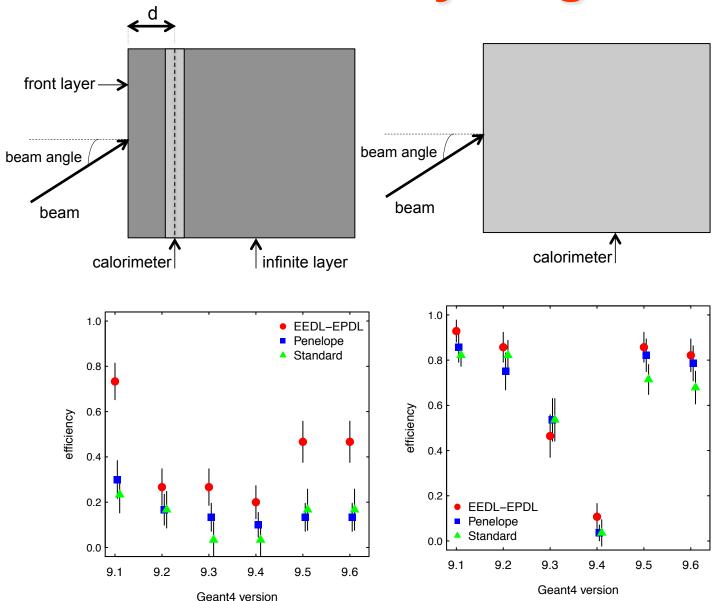

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013


Validation of Geant4 Simulation of Electron Energy Deposition

Matej Batič, Gabriela Hoff, Maria Grazia Pia, Paolo Saracco, and Georg Weidenspointner

Target	Z	E	angle	Geant4 version					
		(kev)	(degrees)	9.1	9.2	9.3	9.4	9.5	9.6
Be	4	58	0	0.071	0.014	0.124	0.311	0.149	0.156
Be	4	109	0	0.021	< 0.001	< 0.001	< 0.001	0.015	0.013
Be	4	314	0	0.015	0.764	< 0.001	< 0.001	0.013	0.014
Be	4	521	0	0.092	0.967	< 0.001	< 0.001	0.832	0.793
Be	4	1033	0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
C	6	1000	0	0.917	0.994	< 0.001	< 0.001	0.290	0.346
Al	13	314	0	0.182	< 0.001	< 0.001	< 0.001	0.004	0.007
Al	13	521	0	0.574	< 0.001	< 0.001	< 0.001	0.091	0.089
Al	13	1033	0	0.484	0.123	< 0.001	< 0.001	< 0.001	< 0.001
Al	13	314	60	0.396	0.596	< 0.001	< 0.001	0.001	0.002
Al	13	521	60	0.137	0.011	0.001	< 0.001	0.056	0.086
Al	13	1033	60	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Fe	26	300	0	0.832	< 0.001	0.351	0.741	0.787	0.742
Fe	26	500	0	0.055	< 0.001	0.314	0.003	0.814	0.808
Fe	26	1000	0	< 0.001	< 0.001	0.169	0.003	< 0.001	< 0.001
Cu	29	300	0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Cu	29	500	0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Mo	42	100	0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Mo	42	300	0	0.062	< 0.001	0.001	< 0.001	0.008	0.002
Mo	42	500	0	0.020	< 0.001	< 0.001	0.001	0.128	0.115
Mo	42	1000	0	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Mo	42	300	60	0.023	0.002	0.049	0.043	0.029	0.022
Mo	42	500	60	0.022	< 0.001	0.011	0.006	0.003	0.007
Mo	42	1000	60	0.037	< 0.001	0.010	0.028	0.001	0.002
Ta	73	300	0	0.043	0.511	0.242	0.272	0.364	0.294
Ta	73	500	0	0.025	0.003	< 0.001	< 0.001	0.012	0.019
Ta	73	1000	0	0.030	< 0.001	< 0.001	< 0.001	0.002	0.001
Ta	73	500	60	0.011	0.003	0.040	0.042	0.010	0.007
Ta	73	1000	60	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
Ta	73	500	30	0.034	0.005	0.004	0.006	0.020	0.017

CMS simulation



☐ The lateral shower profile for photons (and e[±]) is changing with the Geant4 version from 9.3.p01 to 9.4 to 9.4.p02. This is not yet understood and we need some help to get some of the key distributions agreeing better with the data.

—...1

What is bad may be good

Maria Grazia Pia. INFN Genova

IEEE Standard 1012

validation: (A) [...] (B) The process of providing evidence that the system, software, or hardware and its associated products satisfy requirements allocated to it at the end of each life cycle activity, solve the right problem (e.g., correctly model physical laws, implement business rules, and use the proper system assumptions), and satisfy intended use and user needs

- M. Batic, G. Hoff, M. G. Pia, P. Saracco, G. Weidenspointner, **Validation of Geant4 simulation of electron energy deposition** *IEEE Trans. Nucl. Sci.*, vol. 60, no. 4, pp. 2934-2957, 2013
- S. Hauf, M. Kuster, M. Batic, Z. W. Bell, D. H. H. Hoffmann, P. M. Lang, S. Neff, M. G. Pia, G. Weidenspointner, A. Zoglauer, Validation of Geant4-based Radioactive Decay Simulation

 IEEE Trans. Nucl. Sci., vol. 60, no. 4, pp. 2984-2997, 2013
- M. Batic, G. Hoff, M. G. Pia, P. Saracco,

Photon elastic scattering simulation: validation and improvements to Geant4 *IEEE Trans. Nucl. Sci.*, vol. 59, no. 4, pp. 1636-1664, 2012

H. Seo, M. G. Pia, P. Saracco, C. H. Kim,

Ionization cross sections for low energy electron transport

IEEE Trans. Nucl. Sci., vol. 58, no. 6, pp. 3219-3245, 2011

- M. G. Pia, H. Seo, M. Batic, M. Begalli, C. H. Kim, L. Quintieri, P. Saracco,
 Evaluation of atomic electron binding energies for Monte Carlo particle transport
 IEEE Trans. Nucl. Sci., vol. 58, no. 6, pp. 3246-3268, 2011
- M. Batic, M. G. Pia, P. Saracco,

Validation of proton ionization cross section generators for Monte Carlo particle transport *IEEE Trans. Nucl. Sci.*, vol. 58, no. 6, pp. 3269-3280, 2011

M. G. Pia, M. Begalli, A. Lechner, L. Quintieri, P. Saracco,

Physics-related epistemic uncertainties of proton depth dose simulation

IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp. 2805-2830, 2010

- M. G. Pia, G. Weidenspointner, M. Augelli, L. Quintieri, P. Saracco, M. Sudhakar, A. Zoglauer,
 PIXE simulation with Geant4
 IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3614-3649, 2009
- M. G. Pia, P. Saracco, M. Sudhakar,

Validation of radiative transition probability calculations

IEEE Trans. Nucl. Sci., vol. 56, no. 6, pp. 3650-3661, 2009

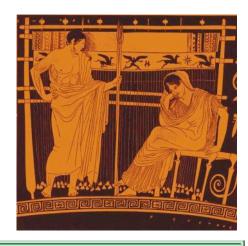
- A. Lechner, M.G. Pia, M. Sudhakar,
 - Validation of Geant4 low energy electromagnetic processes against precision measurements of electron energy deposit *IEEE Trans. Nucl. Sci.*, vol. 56, no. 2, pp. 398-416, 2009
- A. Owens, B. Beckhoff, G. Fraser, M. Kolbe, M. Krumrey, A. Mantero, M. Mantler, A. Peacock, M. G. Pia, D. Pullan, U. G. Schneider, G. Ulm,

Measuring and Interpreting X-ray Fluorescence from Planetary Surfaces *Anal. Chem.*, vol. 80, no. 22, pp. 8398-8405, 2008

• S. Chauvie, P. Nieminen, M. G. Pia,

Geant4 model for the stopping power of low energy negatively charged hadrons *IEEE Trans. Nucl. Sci.*, vol. 54, no. 3, pp. 578-584, 2007

• S. Guatelli, A. Mantero, B. Mascialino, P. Nieminen, M. G. Pia, V. Zampichelli, Validation of Geant4 Atomic Relaxation against the NIST Physical Reference Data *IEEE Trans. Nucl. Sci.*, vol. 54, no. 3, pp. 594-603, 2007

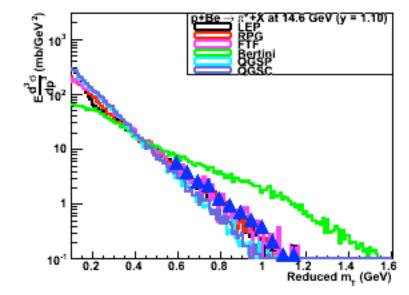


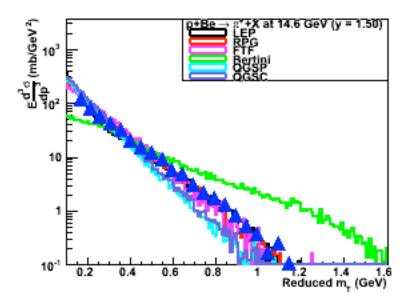
Hadronic physics validation

Validation database at FNAL

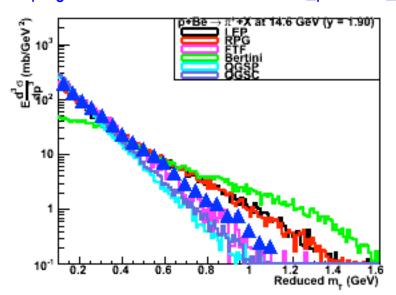
(http://g4validation.fnal.gov:8080/G4ValidationWebApp/index.jsp),

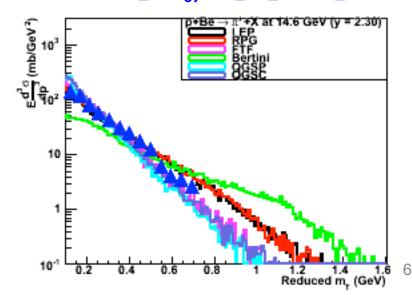
LCG Simulation Validation Project,
Geant4 Collaboration's Validation Task Force...

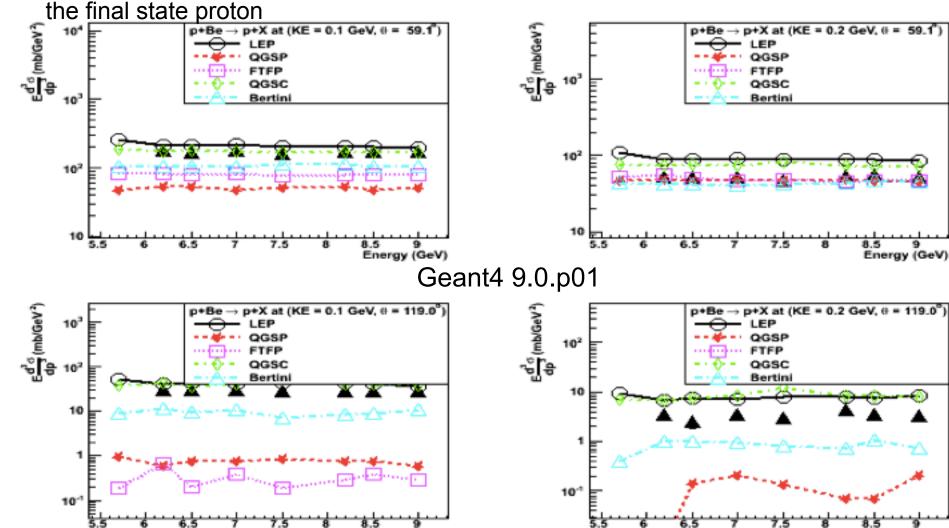


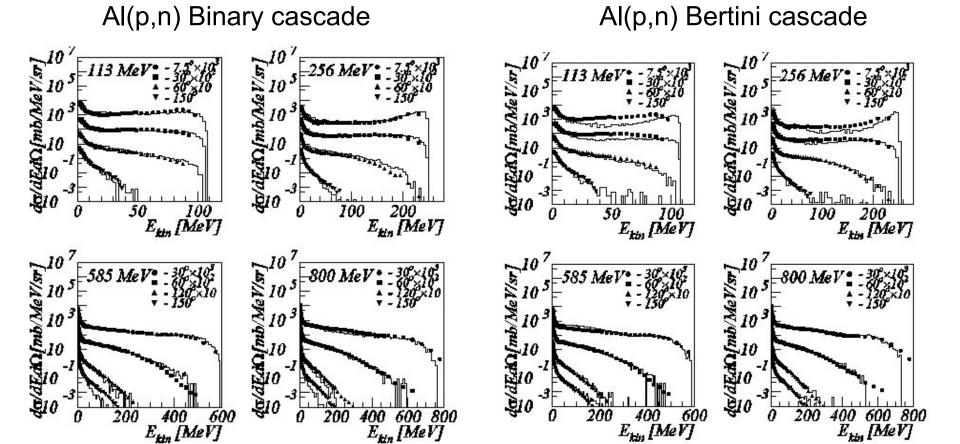

	List of feets						
	Description	Working Group					
ATLAS	shower characteristics of ATLAS Calorimeters	LHC-feedback					
CMS	shower characteristics of CMS Calorimeters	LHC-feedback					
Hadrion	Test of Physics Lists (thick targets, ion beams)	hadronic					
HadrXS	Test of Physics Lists (cross sections)	hadronic					
Hadrcap	is an analogous to Hadr00, with advanced features.	hadronic					
IAEA	IAEA Benchmark of Nuclear Spallation Models	hadronic					
Ndata	Test concerning developments of new nXS, it is calling HP XS as well as HPW XS.	hadronic					
Testfragm	Test of hadronic generators (thin targets, ion beams)	hadronic					
atlasbar	Test of ALTAS barrel type em calorimeter, determines response, resolution, and CPU performance	electromagnetic					
placeholder	Dummy testdes	hadronic					
simplifiedCalo	Test of Shower shapes using selected simplified calorimeter setups.	hadronic					
test19	High energy test, provides comparison with NA61 (31 GeV/c proton beam) and NA49 (158 GeV/c proton beam) data sets.	hadronic					
test22	Testing of the FTF model and comparison with experimental data for a wide energy region	hadronic					
test30	Test of hadronic generators of inelastic processes	hadronic					
test35	Test of hadronic generators of inelastic processes, based on results of HARP collaboration, Experiment PS214 at CERN.	hadronic					
test37	Test against Sandia data, electron beam in semi-infinite media.	electromagnetic					
test41	Comparison with MUSCAT experiment for multiple scattering validation	electromagnetic					
test45	Test of hadronic generators of inelastic processes on thick targets.	hadronic					
test47	Intermediate energy validation is done by comparing Monte Carlo predictions vs experimental data.	hadronic					
test48	Stopping particle test Monte Carlo predictions are compared to experimental data.	hadronic					
test75	Test of gamma-nuclear interactions	hadronic					

List of Tests


A sample of results, impossible to show all!

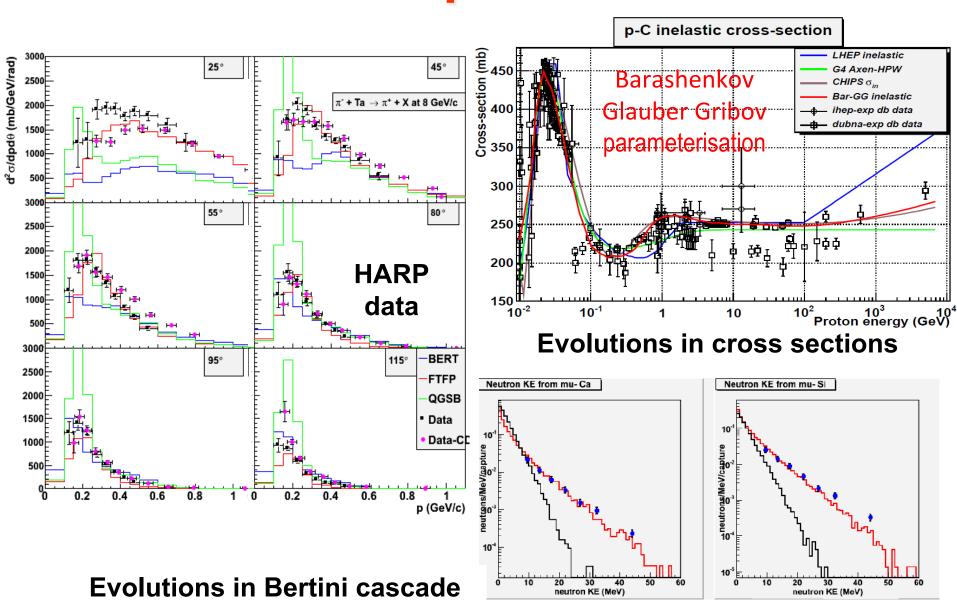

Inclusive pi+ production in 14.6 GeV/c p-Be interactions


http://geant4.cern.ch/results/validation_plots/thin_target/hadronic/medium_energy/test_bnl_802/bnl_data.shtml


Inclusive proton production

Differential cross-section of the inclusive proton production in proton-Be interactions as a function of beam energy, in 2 kinetic energy bins and for 2 different angles of

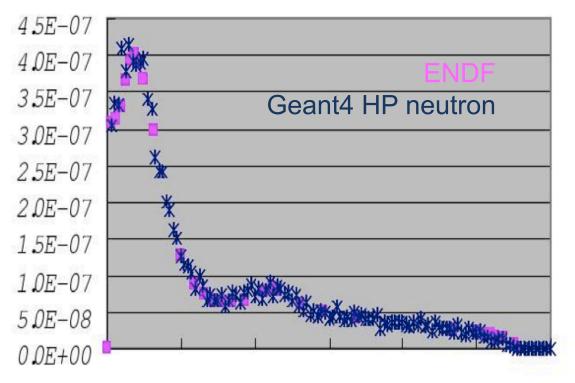
A sample of results


Impossible to show all!

What does one evince from these plots?

Recent developments

G. Folger et al., IEEE NSS 2013



HP neutrons

Gd154 (n,2n) channel

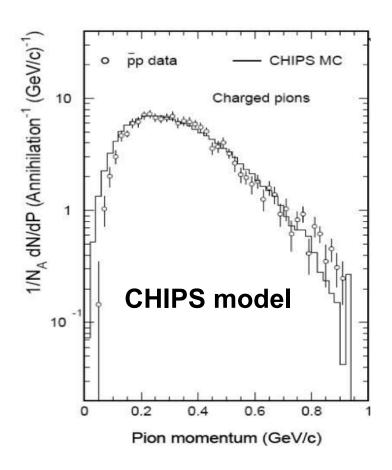
Reference: ENDF/B-VI Release 8, Tape162

Geant4 version: 8.1

Data-driven model

The model is as good as the data on which it is based

Systematics of evaluated data compilations

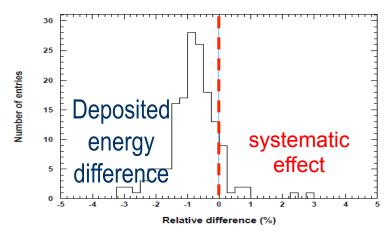

Stopped particles

antiprotons
stopping in H:
charged pion
production

Geant4 CHIPS model

deleted in

Geant4 10.0 version


Can we quantify our ignorance?

Simulation codes usually contain parameters or model assumptions, which are not validated (because of lack of experimental data, or conflicting data)

Or we may not have a complete understanding of some physics processes

Or we may use a simulation model outside the range where it has been validated

These are sources of **epistemic uncertainties**, which in turn can be sources of **systematic effects**

Geant4 Precompound model activated through Binary Cascade w.r.t. standalone Precompound model Maria Grazia Pia, INFN Genova

IEEE Trans. Nucl. Sci., vol. 57, no. 5, pp. 2805-2830, October 2010
Physics-Related Epistemic Uncertainties in Proton
Depth Dose Simulation

Maria Grazia Pia, Marcia Begalli, Anton Lechner, Lina Quintieri, and Paolo Saracco

No generally accepted method of measuring epistemic uncertainties

Interval analysis

Dempster-Shafer theory of evidence

Data for software validation

Passive observations of physical events

(e.g. supernovae explosions or the weather)

Experiments designed to elucidate a general physics principle or law

(e.g. typical HEP experiments)

Experiments designed to certify a detector (e.g. test beams)

Experiments specifically designed to validate a software system/component

We need a paradigm shift...

- Scientists and funding agencies understand the value of experiments designed
 - to explore new scientific phenomena
 - to test theories
 - to examine the performance of design components
- Few appreciate the value of experiments explicitly conducted for software validation
- Gain of consciousness in some fields (e.g. NASA, military projects)

Things change...

In 1998, when it was first developed, Geant4 low energy package based on EADL-EEDL-EPDL was an advanced simulation tool

When it was first re-engineered into Geant4, Penelope adopted a different modeling approach w.r.t. using EEDL/EPDL

15 years later...

The state-of-the-art has evolved
Rethink Geant4 low energy electromagnetic domain

geant4/electromagnetic/pii/

Current status

Electromagnetic physics revisited

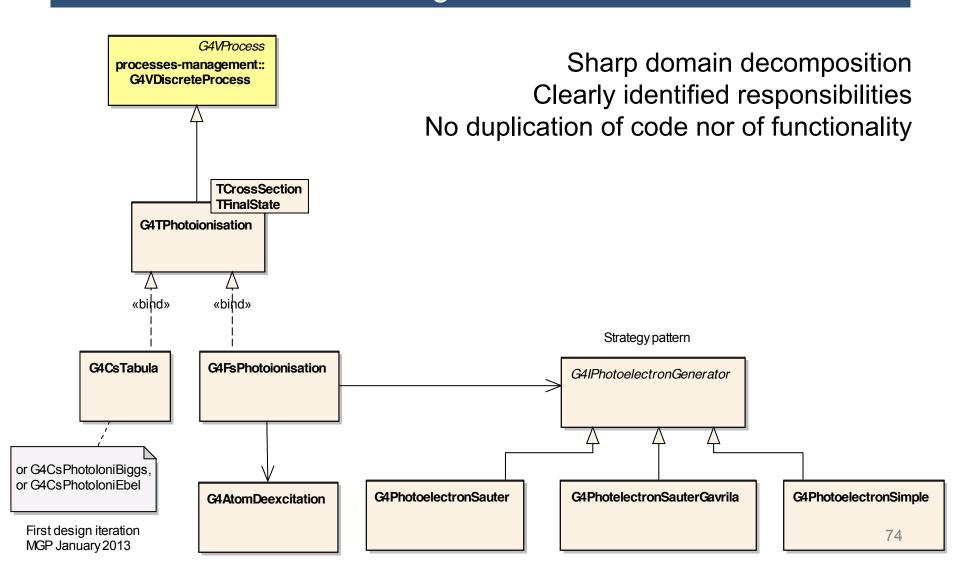
- Wide scope project to assess quantitatively the state-of-the-art of electromagnetic physics modeling for Monte Carlo particle transport
 - Implementation and evaluation of many physics modeling methods
 - Extension of current Geant4 low energy coverage
 - Comparisons with large experimental data samples of various origin
 - Statistical data analysis

Photons

- Elastic scattering: published
- Compton scattering, photoionisation: in progress
- Pair production: early stage

Electrons

Ionisation at low energies (challenge IPA and isolated atom assumption)


Protons

- Ionisation cross sections, PIXE

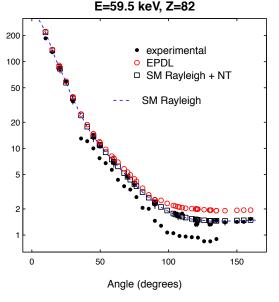
...more to come

Sound software process

Streamlined software design consistent with Geant4 kernel

Photon elastic scattering

Form factor approximation:


non relativistic, relativistic, modified + anomalous scattering factors

2nd order S-matrix calculations

recent calculations, not yet used in Monte Carlo codes

Photon Elastic Scattering Simulation: Validation and Improvements to Geant4

Matej Batič, Gabriela Hoff, Maria Grazia Pia, and Paolo Saracco

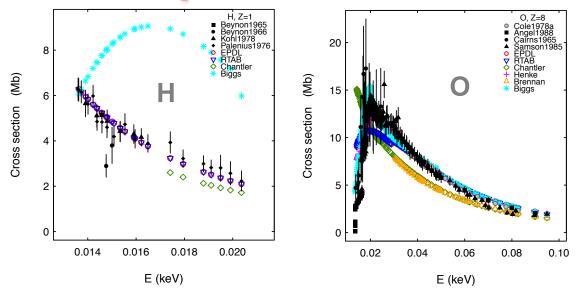
do/dΩ (b/sr)

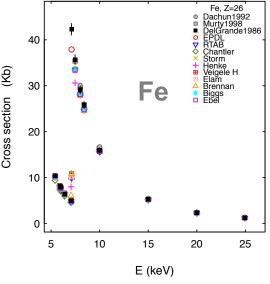
Differential cross sections

	Penelope	Penelope	EPDL	Relativ.	Non-Rel.	Modified	MFF	RFF	SM
	2001	2008		FF	FF	FF	ASF	ASF	NT
ε	0.27	0.38	0.38	0.25	0.35	0.49	0.52	0.48	0.77
error	±0.05	±0.06	±0.06	±0.05	±0.06	±0.06	±0.06	±0.06	±0.05

 ε = fraction of test cases compatible with experiment, 0.01 significance Maria Grazia Pia. INFN Genova

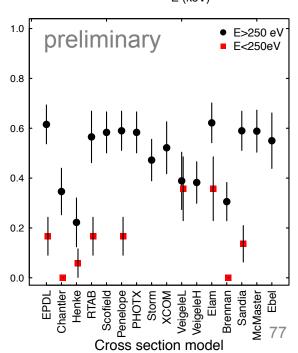
Photoionisation total cross sections

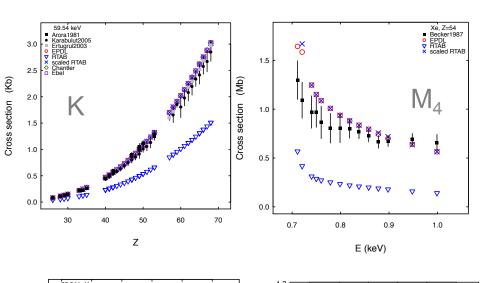

Year	Compilation	Energy	Z	(sub)Shell	Method
1967-1988	Biggs-Lighthill	10 eV – 100 GeV	1-100	-	parameterised
1992	Brennan-Cowan	30 eV – 700 keV	3-92	-	tabulated
2000	Chantler	10 eV – 433 keV	1-92	K	tabulated
2003	Ebel	1 keV – 300 keV	1-92	all	parameterised
2002	Elam	100 eV – 1 MeV	1-98	-	tabulated
1997	EPDL97 (Scofield)	10 eV – 100 GeV	1-100	all	tabulated
1982-1993	Henke	10 eV – 30 keV	1-92	-	tabulated
1970- <mark>2006</mark>	McMaster/Shaltout	1 keV – 700 keV	1-94	-	tabulated
1989	PHOTX (Scofield)	1 keV – 100 MeV	1-100		tabulated
2001	RTAB	10 eV – 30 keV	1-99	all	tabulated
1973	Scofield	1 keV – 1.5 MeV	1-100	all	tabulated
1970	Storm-Israel	1 keV – 100 GeV	1-100	-	tabulated
1973	Veigele	100 eV – 100 MeV	1-94	-	tabulated
1987- <mark>2010</mark>	XCOM (Scofield)	1 keV – 100 GeV	1-100	-	tabulated

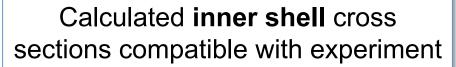

Different methods and calculations

e.g. Chantler's exchange potential in his DHF calculation is different from Scofield's

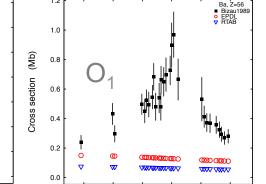
Total photoionisation cross sections


Efficiency




- Most calculation methods exhibit similar compatibility with experiment for E >250 eV
 - Chantler, Brennan-Cowan look worse
- Degraded accuracy below ~250 eV

Analysis of contingency tables						
	EPDL	EPDL				
	Chantler	Brennan-Cowar				
Fisher	0.044	0.011				
Pearson χ ²	0.033	0.007				
Barnard	0.035	0.007				



Shell cross sections

Outer shell cross sections inconsistent with experimental data Beware: small data sample, limited experimental sources

E (keV)

p-value χ^2 test

RTAB scRTAB

Ebel

EPDL Chantler

shell

0.209 0.315 < 0.001 0.350 < 0.001 **L1** 0.075 < 0.001 0.069 0.964 L2 0.299 0.339 < 0.001 0.154 L3 < 0.001 **M1** < 0.001 < 0.001 < 0.001 **M4** 0.031 < 0.001 < 0.001 **M5** < 0.001 < 0.001 < 0.001 **N1** < 0.001 < 0.001 < 0.001 **N6** < 0.001 <0.001 <0.001 < 0.001 **N7** < 0.001 < 0.001 < 0.001 < 0.001 01 < 0.001 < 0.001 < 0.001 < 0.001 02 < 0.001 < 0.001 < 0.001 < 0.001 **O3** < 0.001 < 0.001 < 0.001 < 0.001 **P1** < 0.001 < 0.001 < 0.001 < 0.001

Systematic effect observed with RTAB shell cross sections (presumably a missing factor in the calculation)

0.07

0.08

Maria Grazia Pia, INFN Genova

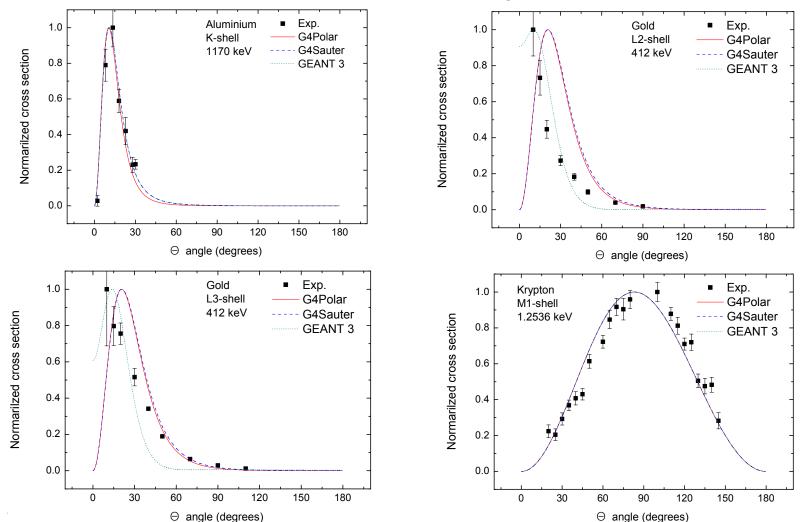
EPDL RTAB

500

400

300

200


100

Cross section

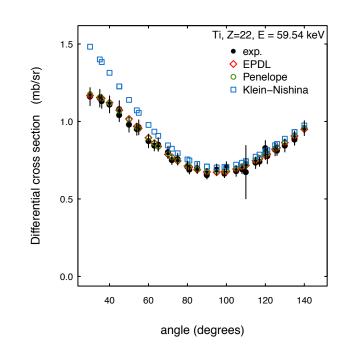
Photoelectron angular distribution

Qualitative appraisal
Limited experimental sample
Experimental systematic effects
(corrected/uncorrected data)

Option à la GEANT 3 (Sauter) evaluated along with other Geant4 options

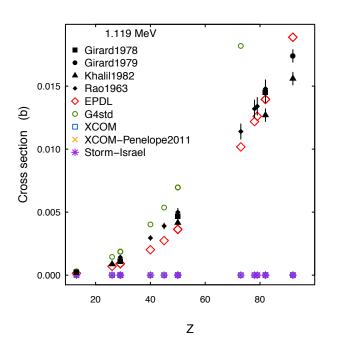
Differential Compton scattering cross section

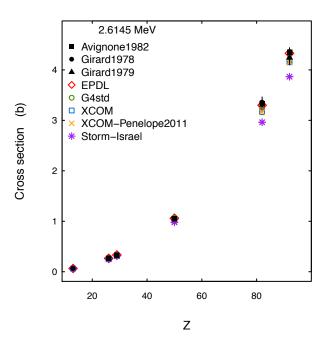
$$\left[\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right]_{\mathrm{inc}} = \left[\frac{\mathrm{d}\sigma}{\mathrm{d}\Omega}\right]_{\mathrm{KN}} S(x, Z)$$


>2300 experimental data

Scattering functions	Efficiency	Error
EPDL	0.82	0.02
Penelope	0.82	0.02
Klein-Nishina	0.54	0.03
Brusa	0.84	0.02
BrusaF	0.84	0.02
PenBrusa	0.84	0.02
PenBrusaF	0.84	0.02
Biggs	0.84	0.02
BiggsF	0.85	0.02
Hubbell	0.82	0.02
Kahane	0.72	0.02

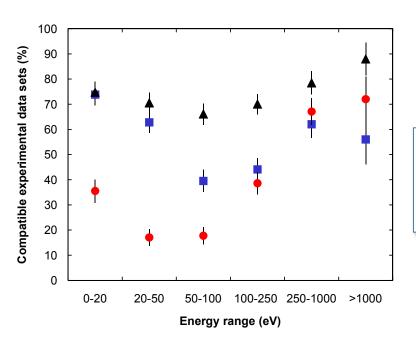
Geant4 lowenergy


e⁺e⁻ pair production

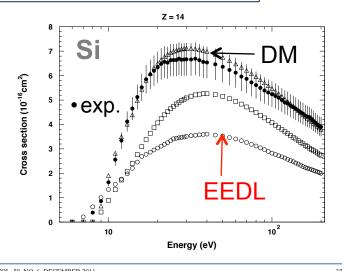


- Total cross section: Bethe-Heitler with corrections (Hubbell, Gimm, Overbo)
- First tests near threshold

E>1.119 MeV


Electron impact ionisation

Extension down to ~tens eV for atoms


(BEB also applicable to molecules)

Validated over 181 experimental data samples, 57 elements

- EEDL currently in Geant4 low energy package
- Binary-Encounter-Bethe BEB⁻
- Deutsch-Märk DM

new models

Ionization Cross Sections for Low Energy Electron Transport

Hee Seo, Maria Grazia Pia, Paolo Saracco, and Chan Hyeong Kim

2013: inner shell ionisation cross sections

New models + validation

Paper in preparation

82

Proton impact ionisation

K, L, M shells

SUMMARY OF χ^2 TEST RESULTS OF L SUBSHELL IONIZATION CROSS SECTIONS BY PROTON IMPACT

36 pages

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 56, NO. 6, DECEMBER 2009

PIXE Simulation With Geant4

Maria Grazia Pia, Georg Weidenspointner, Mauro Augelli, Lina Quintieri, Paolo Saracco, Manju Sudhakar, and Andreas Zoglauer

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 58, NO. 6, DECEMBER 2011

Validation of Proton Ionization Cross Section Generators for Monte Carlo Particle Transport

Matej Batič, Maria Grazia Pia, and Paolo Saracco

		ISIC	S 2011	ERCS08	LIO	
		ECPSSR	ECPSSR-UA	Default	Default	
	Elements	28	28	28	28	
L_1	Pass	19	19	18	19	
L_1	Fail	9	9	10	9	
	Efficiency	0.53 ± 0.09	0.53 ± 0.09	0.48 ± 0.09	0.50 ± 0.09	
	Elements	28	28	28	28	
Ι,	Pass	19	22	20	18	
L_2	Fail	9	6	8	10	
	Efficiency	0.68 ± 0.09	0.79 ± 0.08	0.71 ± 0.09	0.64 ± 0.09	
	Elements	28	28	28	28	
τ.	Pass	25	25	26	21	
L_3	Fail	3	3	2	7	
	Efficiency	0.89 ± 0.06	0.89 ± 0.06	0.93 ± 0.05	0.75 ± 0.08	
	Elements	84	84	84	84	
L	Pass	63	66	64	58	
	Fail	21	18	20	26	
	Efficiency	0.75 ± 0.05	0.79 ± 0.04	0.76 ± 0.59	0.69 ± 0.05	

Theoretical and empirical models for proton ionisation cross sections PWBA, ECPSSR (in various flavours), Paul-Sacher, Kahoul, Miyagawa, Orlic, Sow

Summary of the χ^2 Test Results of K Shell Ionization Cross Sections by Proton Impact

	ISICS 2011						KIO
	ECPSSR	ECPSSR-HS	ECPSSR-UA	ECPSSR-HE	ECPSSR-HS-UA	Default	Default
Tested elements	66	66	66	66	66	66	66
Pass	44	51	44	46	51	51	47
Fail	22	15	22	20	15	15	19
Efficiency	0.67 ± 0.06	0.77 ± 0.05	0.67 ± 0.06	0.70 ± 0.06	0.77 ± 0.05	0.77 ± 0.05	0.71 ± 0.06

Conceptual challenge for condensed transport!

Proton ionisation + Atomic relaxation = PIXE

Radioactive decay

IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 2013

Radioactive Decays in Geant4

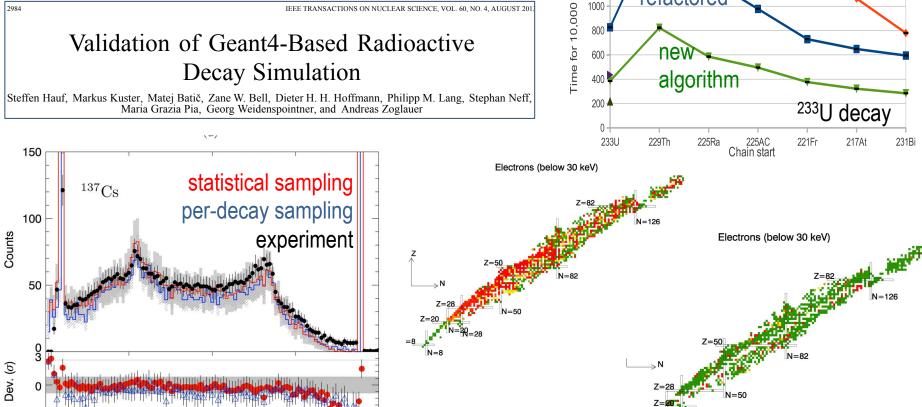
175

Maria Grazia Pia. INFN Genova

350

Energy (keV)

525


700

2966

Steffen Hauf, Markus Kuster, Matej Batič, Zane W. Bell, Dieter H. H. Hoffmann, Philipp M. Lang, Stephan Neff, Maria Grazia Pia, Georg Weidenspointner, and Andreas Zoglauer

2984 IEEE TRANSACTIONS ON NUCLEAR SCIENCE, VOL. 60, NO. 4, AUGUST 201

Validation of Geant4-Based Radioactive **Decay Simulation**

2000

1800

1600

1000

Mean relative deviation

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40 0.45 0.50

chains [ms]

84

Classical

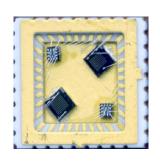
★ End of chain – S ► End of chain – C

→Old Statistical

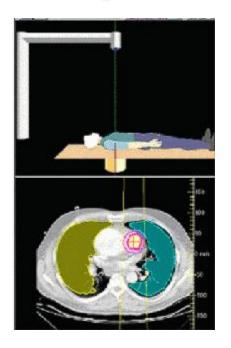
Geant4

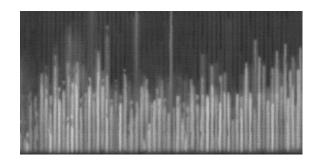
refactored


This is only the first step...


- Deployment: make it usable
 - Integration testing
 - Examples
 - Web documentation
 - etc.
- Lessons learned
 - Interplay with change management
- Make, release and maintain new data libraries
- Charged particles
- Condensed transport

etc.


Challenges


Condensed and discrete transport

How does one estimate radiation effects on components exposed to LHC + detector environment?

How does one relate dosimetry to radiation biology?

And what about nanotechnology-based detectors for HEP?

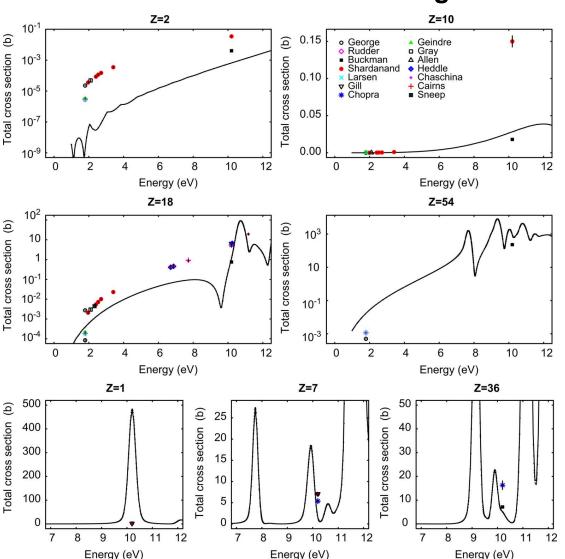
And tracking in a gaseous detector?

And plasma facing material in a fusion reactor?

Maria Grazia Pia. INFN Genova

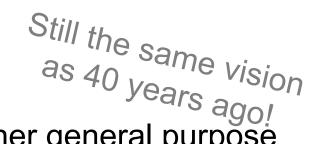
IPA and IA assumption

Micro/nano-dosimetry Radiation effects


Energy (eV)

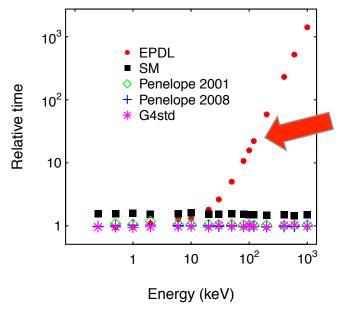
IPA (Independent Particle Approximation) and IA (Isolated Atom) assumption are the foundation of all "general purpose" Monte Carlo codes

In what conditions do they break? Down to what energy are they valid?


Monte Carlo particle transport beyond IPA and IA?

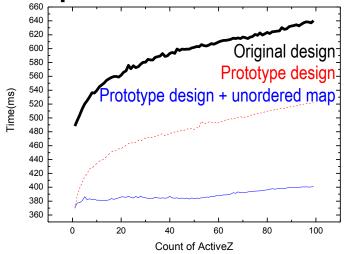
Photon elastic scattering

Energy (eV)


Detectors

- Detector simulation in Geant4 and other general purpose Monte Carlo codes is limited to phenomena described in IPA and matter treated in IA
- What about interactions with solids?
- Crystals, organic and inorganic scintillators
- Semiconductor detectors
- Nanotechnology-based detectors
- Home-made simulation codes for detector R&D
 - Usually not publicly available
- An environment for these studies in a Monte Carlo toolkit?

Computational performance

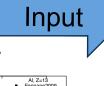

- Not only a matter of fancy techniques
 - Multi-threading, vectorization, GPUs etc.
- Software quality, efficient algorithms, smart ideas
 - ...and also user application code!

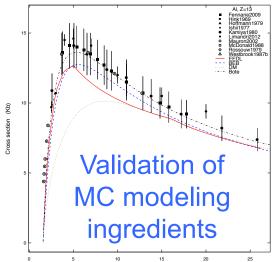
Photon elastic scattering

Computational performance improvement as a by-product of refactoring/testing

Pair production cross sections

time (ms) to retrieve data vs. number of elements present in the experimental set-up


The fastest algorithm


no algorithm at all

Shift modeling from algorithms to data

Uncertainty quantification

cross sections, branching ratios, physics models, physics parameters...

Monte Carlo method
Statistical uncertainty
Geant 4

$$With uncertainties$$

$$G(x) = \int_{-\infty}^{+\infty} d\Sigma_S f(\Sigma_S) \delta(x - x_0(\Sigma_S)) = \left| \frac{d\Sigma_S(x_0)}{dx_0} \right|_{x_0 = x} f(\Sigma_S(x))$$

P. Saracco, M.G. Pia, M. Batic, Theoretical ground for the propagation of uncertainties in Monte Carlo particle transport, TNS Feb. 2014

Uncertainty quantification is the ground for predictive Monte Carlo simulation

Meditation

Food for thought

- Geant4 is a rich and powerful tool for experimental research
- Validation is ongoing
- Software evolution since RD44

"The main problem with GEANT 3 was that no documentation on its program design was available. Only, say, ten people in the world knew how it worked."

- Detector R&D
- New application domains
 Multi-scale simulation
- Computational environment
 Uncertainty Quantification
- Beyond IPA and IA

In my end is my beginning.

T. S. Eliot, Four Quartets (East Coker)