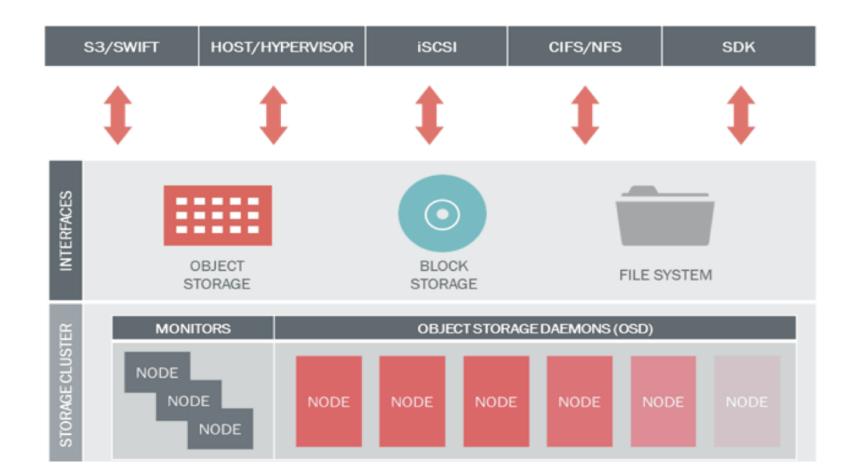


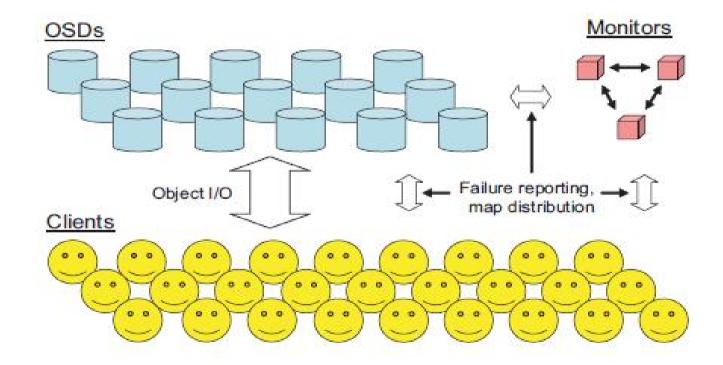
INFN CNAF

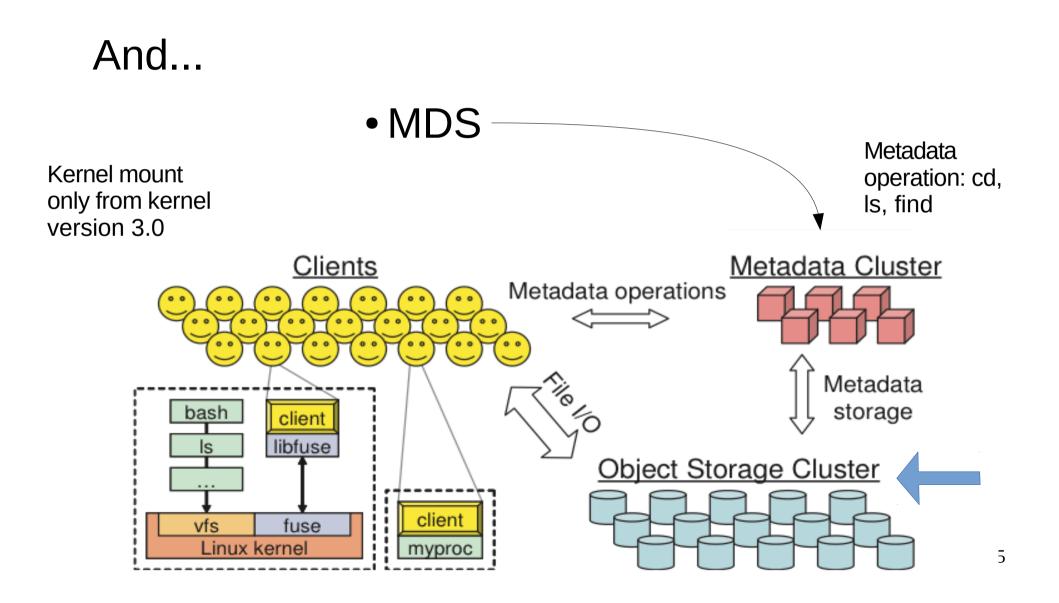
Matteo Favaro


What is Ceph?

- Ceph is a distributed object store and file system designed to provide performance, reliability and scalability. It is open source and freely-availal
- What does it provide?
 - Object Storage: access to the RADOS object-based storage system (RADOS = OSD + MON + MDS)
 - Librados: native api library
 - REST Gateway: cloud storage interface (S3 / openStack)

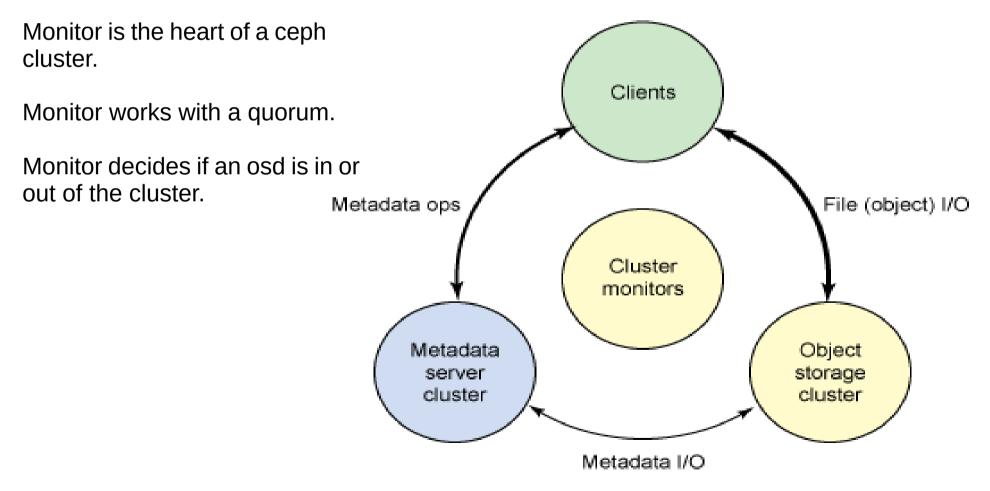
How is it accessed?


- native binding or RESTful APIs
- mount Ceph as a thinly provisioned block device
- Mount Ceph FS file system


Ceph system 1/2

Ceph has 3 base daemons that make it works

- Monitor
- OSD

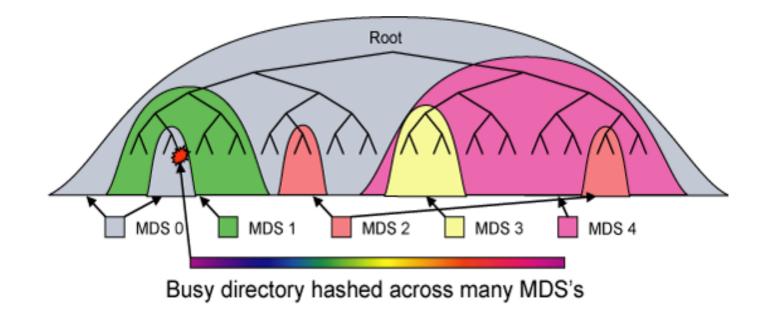


Ceph system 2/2

Ceph: Monitor

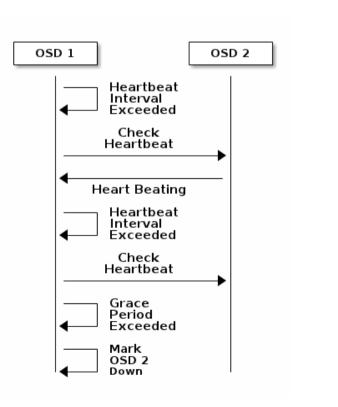
A Ceph Monitor maintains maps of the cluster state.

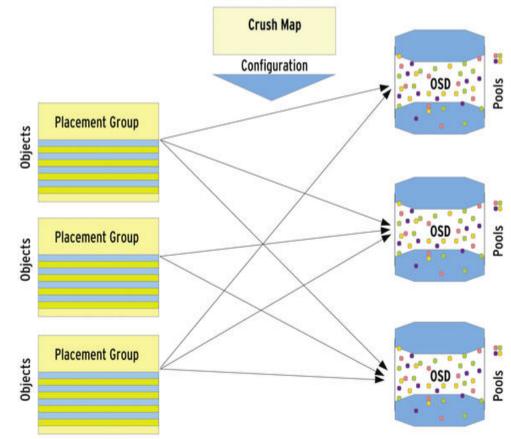
No monitor no party...

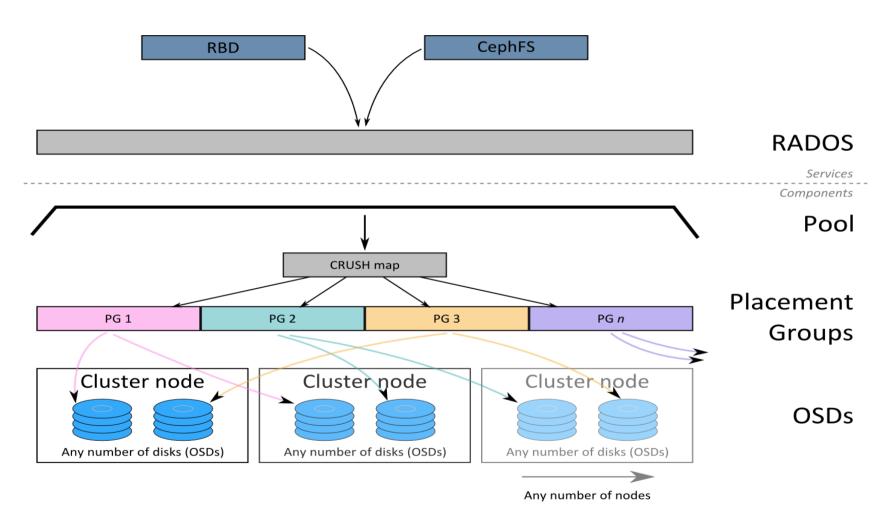

Ceph Maps

- the OSD map: how is deployed the OSDs
- Placement Group (PG): how the data is divided into the OSDs
- CRUSH map: define where put the data and gives priority to objects
- Monitor map: how the monitors are deployed
- MDS map: the structure of the tree of CEPHFS
- Ceph maintains a history (called an "epoch") of each state change in the Ceph Monitors, Ceph OSD Daemons, and PGs.

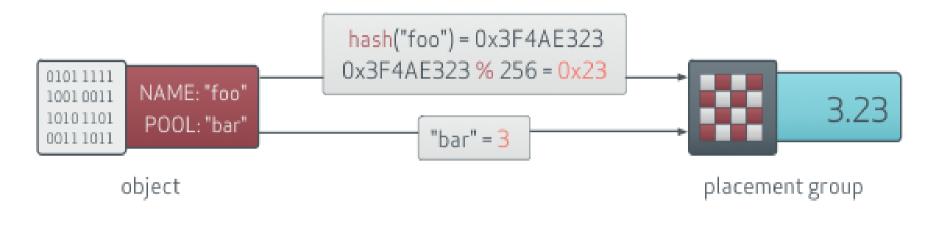
```
[root@ds-07-01 ~]# ceph -w
    cluster 1f0041f1-93d8-4da7-a859-8d7ae0531e4c
    health HEALTH_OK
    monmap e5: 3 mons at {ds-07-01=131.154.129.182:6789/0,ds-07-02=131.154.129.
183:6789/0,ds-07-03=131.154.129.184:6789/0}, election epoch 20, quorum 0,1,2 ds-
07-01,ds-07-02,ds-07-03
    mdsmap e42728: 1/1/1 up {0=ds-07-05=up:active}
    osdmap e247: 10 osds: 10 up, 10 in
    pgmap v128406: 1536 pgs, 4 pools, 10366 GB data, 2649 kobjects
    20755 GB used, 52596 GB / 73352 GB avail
    1536 active+clean
```

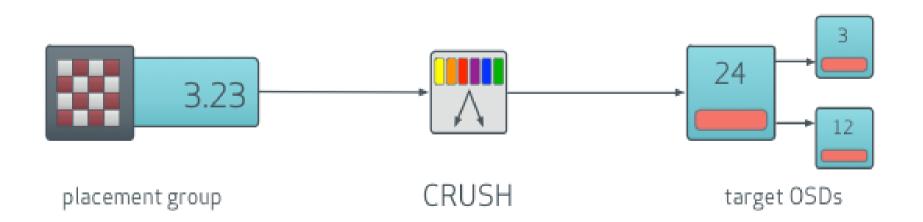

Ceph: MDSs


 A Ceph Metadata Server (MDS) stores metadata on behalf of the Ceph Filesystem (i.e., Ceph Block Devices and Ceph Object Storage do not use MDS). The MDS daemon permits to access CEPH FS via posix.


Ceph: OSD

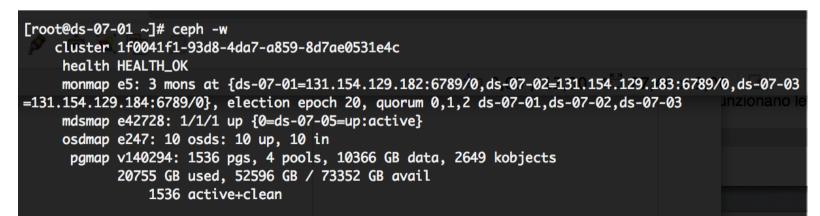
 A Ceph OSD Daemon (Ceph OSD) stores data, handles data replication, recovery, backfilling, rebalancing, and provides information to Ceph Monitors by checking other Ceph OSD Daemons for a heartbeat.




OSD vs pgs vs Pool

- A **pool** is like a partition
- The **Pgs** is a stripe of the data
- The osd is the container

How the "placement group position" is determined



Ceph common query and information

 Quick view osd distribution

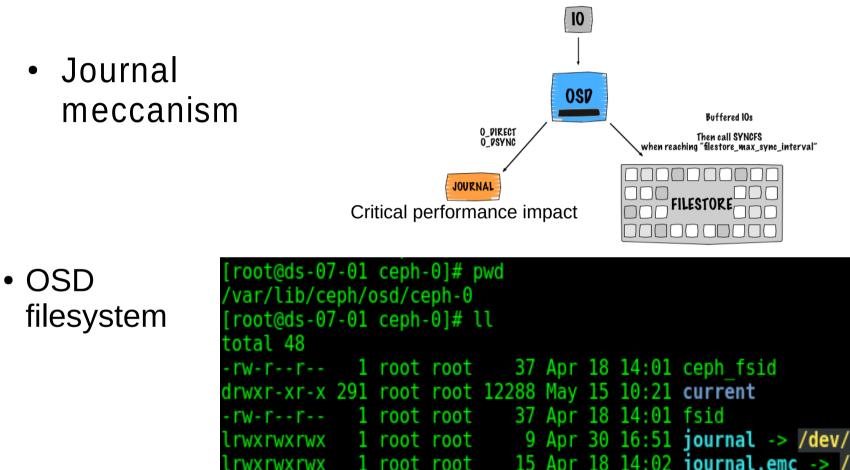
[root@d	s-07-01 /	_]# ceph osd t	tree		
# id	weight	type name	up/dowr	n reweigh	t
-1	71.6	root default			
-2	14.32	host	ds-07-01		
0	7.16		osd.0	up	1
1 🛌	7.16		osd.1	up	1
	14.32	host	ds-07-02		
2	7.16		osd.2	up	1
3			osd.3	up	1
-4	14.32	host	ds-07-03		
4	7.16		osd.4	up	1
5	7.16		osd.5	up	1
-5	14.32	host	ds-07-04		
6	7.16		osd.6	up	1
7	7.16		osd.7	up	1
-6	14.32	host	ds-07-05		
8			osd.8	up	1
9	7.16		osd.9	up	1

Overall cluster information and health

Ceph common query and information

- Directory to look for: "/var/lib/ceph"
- Configuration File: "/e/tceph/ceph.conf"
 - The ceph configuration file is:
 - Per client file
 - Used for configuration and building
 - Is sectioned

Filesystem space avaiability


- When we use the replica we have a usable space equal to totalspace / num_of_replica
 - We can view this with CephFS

	[root@ds-07-06 ~]# df -h					
	Filesystem	Size	Used	Avail	Use%	Mounted on
	/dev/sda3	126G	2,8G	117G	3%	/
	tmpfs	7,9G	0	7,9G	0%	/dev/shm
	/dev/sda1	504M	141M	338M	30%	/boot
>	131.154.129.182,131.154.129.183,131.154.129.184:/	72T	21T	52T	29%	/media/ceph
	/dev/rbd0	9	7,	1,4G	86%	/mnt/testcephrbd
	[root@ds-07-06 ~]#					

[root@ds-07-06 ~]# cd /media/ceph/ [root@ds-07-06 ceph]# pwd /media/ceph [root@ds-07-06 ceph]# du -sh 11T . [root@ds-07-06 ceph]# Server replica configuration:

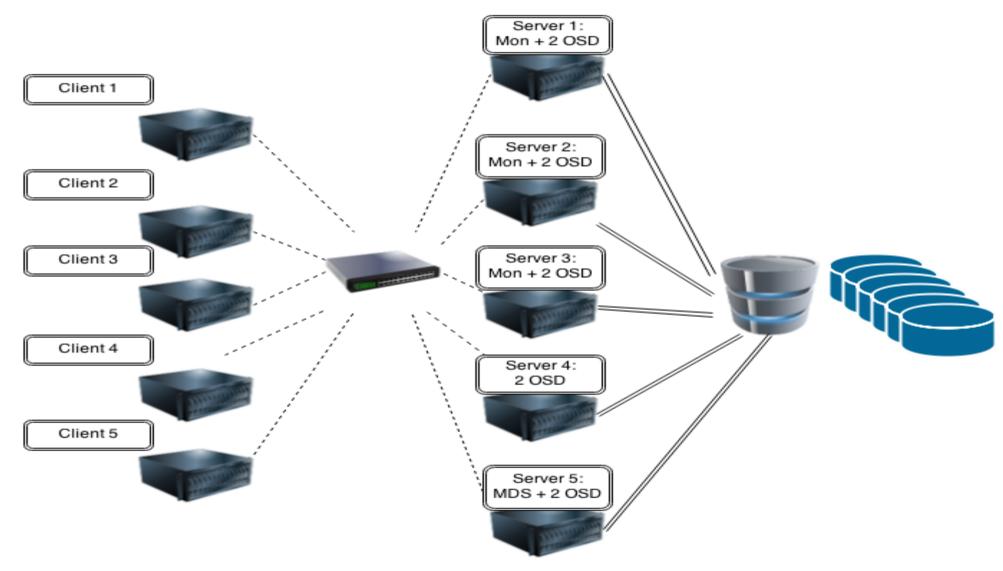
[root@ds-07-01 ~]# ceph osd pool get data size size: 2 [root@ds-07-01 ~]#

Ceph critical point /1

[root@ds-07-01	ceph	0]# 1	เเ				
total 48							
-rw-rr 1	root	root	37	Apr	18	14:01	ceph_fsid
drwxr-xr-x 291	root	root	12288	May	15	10:21	current
-rw-rr 1	root	root	37	Apr	18	14:01	fsid
lrwxrwxrwx 1	root	root	9	Apr	30	16:51	journal -> /dev/ram0
lrwxrwxrwx 1	root	root	15	Apr	18	14:02	journal.emc -> /dev/emcpowere1
- rw 1	root	root	56	Apr	18	14:01	keyring
-rw-rr 1	root	root	21	Apr	18	14:01	magic
-rw-rr 1	root	root	6	Apr	18	14:01	ready
-rw-rr 1	root	root	4	Apr	18	14:01	store_version
-rw-rr 1	root	root	42	Apr	18	14:01	superblock
-rw-rr 1	root	root	2	Apr	18	14:01	whoami
[root@ds-07-01	ceph	-01#					

Ceph critical point /2

- Multiple mds -> fixed last release (10 days ago)
- SL6 has kernel 2.6.32, CephFS requires 2.6.34 for cephFS
- Deployment -> ceph-deploy strange behaviour on deploy
 - With a manual deployment all work fine
- Raccomended minimum replica is 2 or 3 without replica the filesystem is extremely sensitive
 - Clock screw between osds and monitor
 - Recover osd (deamon died) bring always a lot of problems
 - A Ceph Storage Cluster requires at least two Ceph OSD Daemons to achieve an active + clean state when the cluster makes two copies of your data


How to build a cluster

- Few steps:
 - Creating keys for cluster auth and start ONE initial Monitor
 - Add osds to cluster (here there is some preparation on the server in order to easily start the OSD daemon)
 - The ceph cluster is up and running
- In a second moment we can add OSDs or Monitors or MDSs
- The cluster automatically rebalance the data and increase the avaiable space

Our test Environment

- Machines: 5 server and 5 client
- Every server (at the end) mount 2 disks and export as OSD
- Every server run a monitor daemon,
- One server run the MDS daemon
- The Machines are interconnected with a 1Gbps lan cable
- Disks are luns from Emc clariion CX3-380 (20 lun with 7.2 TB) with 8x4 Gbs fiber channel connection

Our Environment

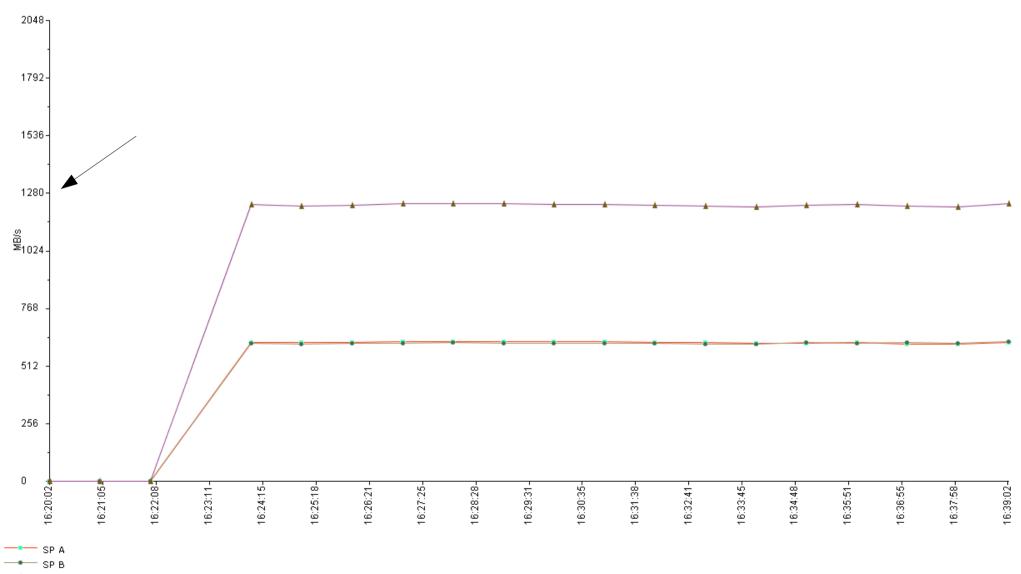
Environment Write raw performance: each disk was mounted from All servers and all read/write concurrently

	Path	Write		Read	
1	emcpowerz	19,9	MB/s	20,5	MB/s
2	emcpowerq	19,9	MB/s	21,1	MB/s
3	emcpowerx	23,9	MB/s	46,6	MB/s
4	emcpowero	23,7	MB/s	52,6	MB/s
5	emcpowery	23,6	MB/s	47,4	MB/s
6	emcpowerl	23,9	MB/s	60,3	MB/s
7	emcpowerw	25,0	MB/s	43,2	MB/s
8	emcpowerk	24,4	MB/s	50,2	MB/s
9	emcpowerv	25,7	MB/s	46,9	MB/s
10	emcpowerj	24,2	MB/s	49,0	MB/s
11	emcpowers	21,2	MB/s	57,4	MB/s
12	emcpoweri	21,2	MB/s	58,2	MB/s
13	emcpoweru	23,5	MB/s	46,7	MB/s
14	emcpowerg	23,6	MB/s	45,6	MB/s
15	emcpowerr	23,6	MB/s	46,6	MB/s
16	emcpowerh	23,9	MB/s	44,1	MB/s
17	emcpowert	25,3	MB/s	42,3	MB/s
18	emcpowerd	25,2	MB/s	40,9	MB/s
19	emcpowerp	24,7	MB/s	47,9	MB/s
20	emcpowerf	24,1	MB/s	43,6	MB/s

Environment raw Write performance: each disk was mounted from one servers and tested this is a mean of each result, one write a time

1	emcpowerz	350 MB/s
2	emcpowerq	348 MB/s
3	emcpowerx	349 MB/s
4	emcpowero	354 MB/s
5	emcpowery	352 MB/s
6	emcpowerl	340 MB/s
7	emcpowerw	348 MB/s
8	emcpowerk	350 MB/s
9	emcpowerv	346 MB/s
10	emcpowerj	347 MB/s
11	emcpowers	351 MB/s
12	emcpoweri	346 MB/s
13	emcpoweru	349 MB/s
14	emcpowerg	349 MB/s
15	emcpowerr	350 MB/s
16	emcpowerh	350 MB/s
17	emcpowert	348 MB/s
18	emcpowerd	347 MB/s
19	emcpowerp	351 MB/s
20	emcpowerf	345 MB/s

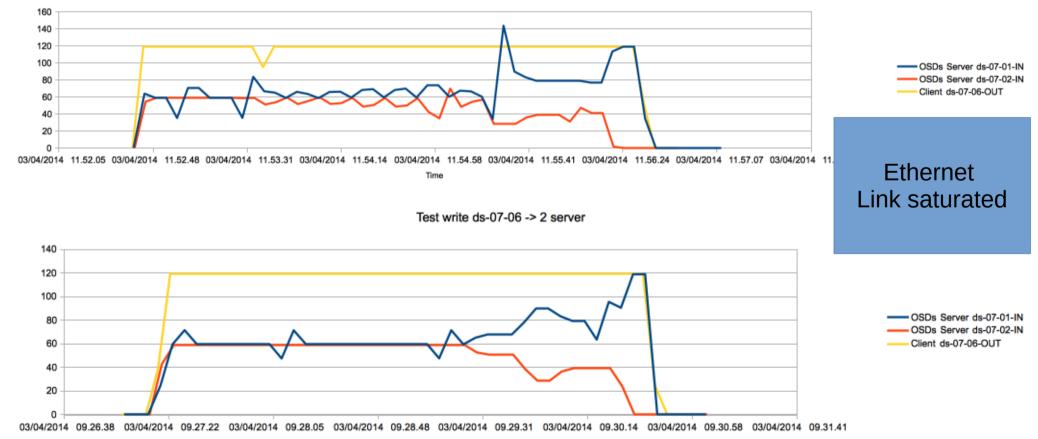
Overal Raw score


Total write bandwidth (MB/s):

607,6

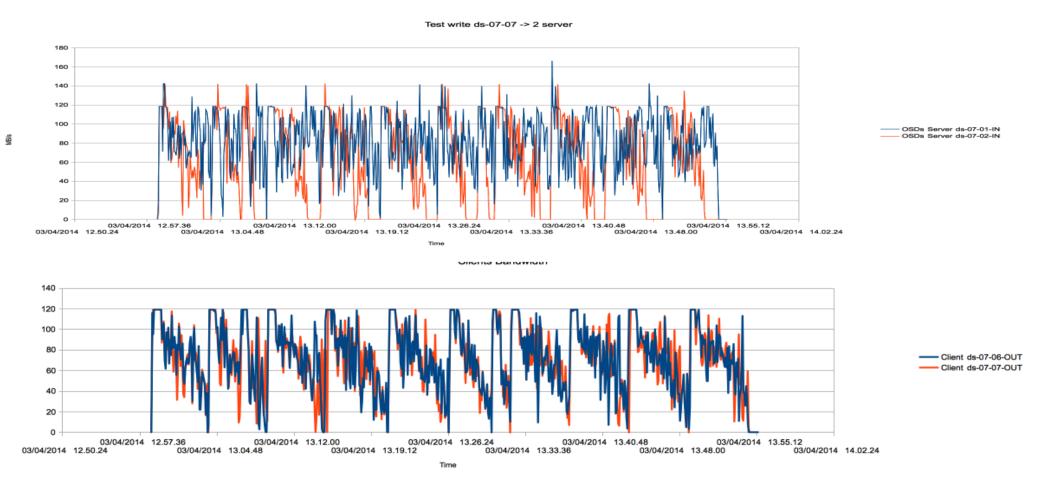
Total read bandwidth (MB/s):

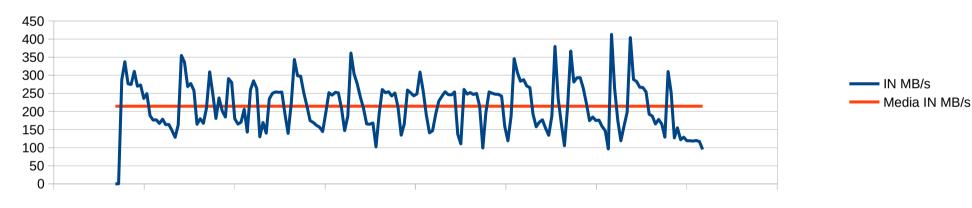
1196,2


Raw READ Performance graph

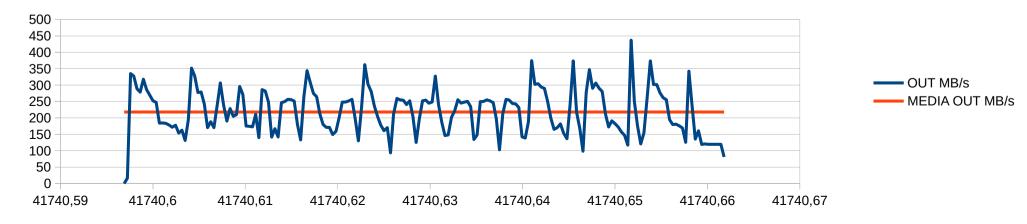
🔺 Storage System

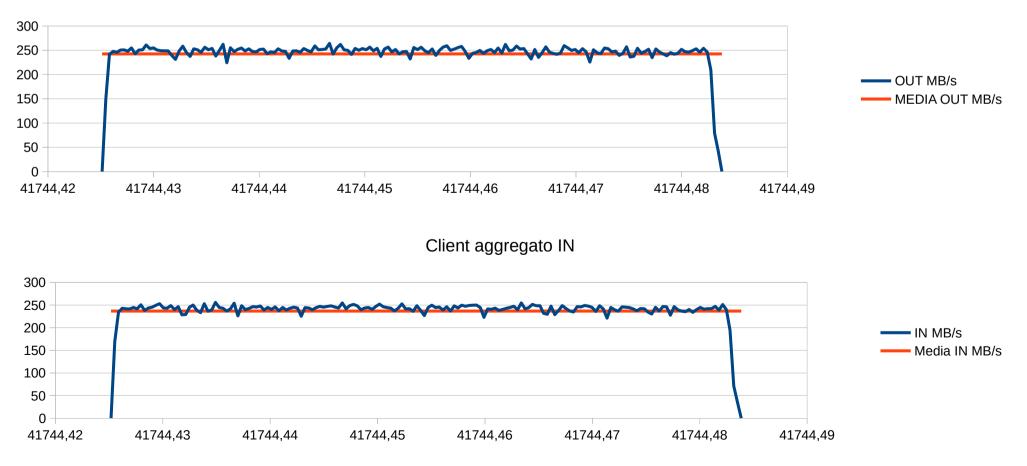
Test 1 With Ceph deployed


• 2 server and 1 client write. Journal are on the same osd disk


Test write ds-07-07 -> 2 server

Time


• 2 server and 2 client wrise nultaneously. Journal on the same osd.

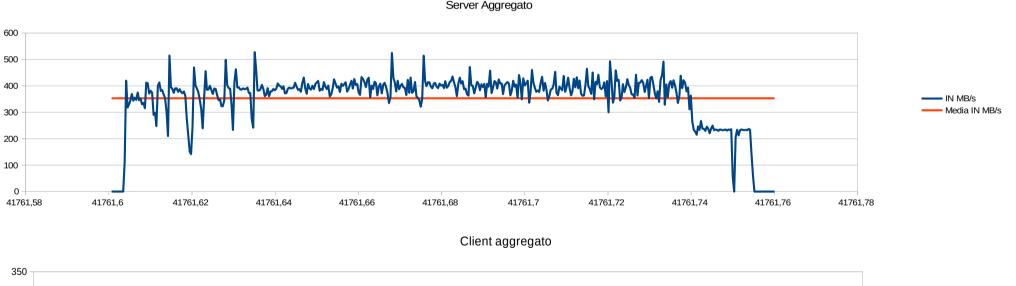

 5 server with 10 osd and 5 clients writting simultaneously one file each client Server Aggregato IN

Client aggregato OUT

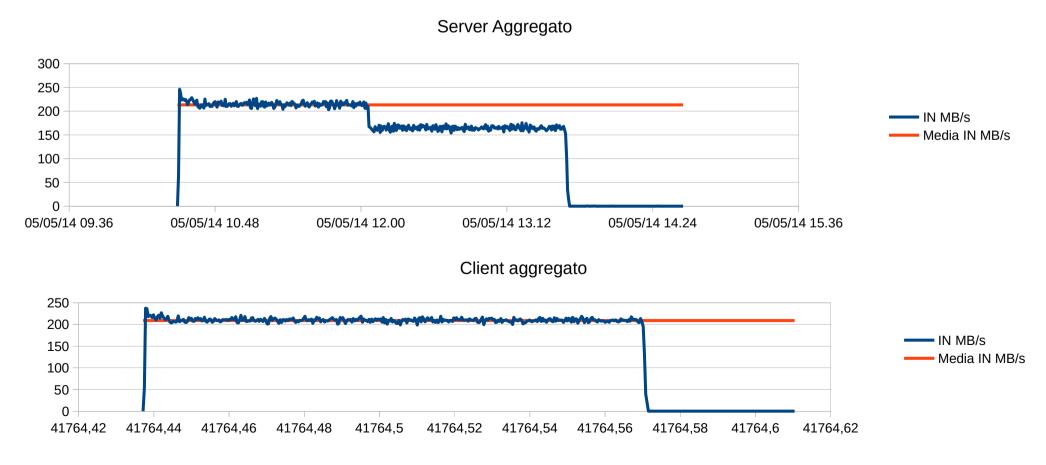
• 5 server with 10 osd and 5 clients reading simultaneously one file each client

Server Aggregato OUT

• 5 server with 10 osd and 5 clients reading simultaneously TWO file each client, replica not active


Server Aggregato OUT

 5 server with 10 osd and 5 clients writting simultaneously one file each client. Journal partition moved or other disk, replica active



 5 server with 10 osd and 5 clients writting simultaneously one file each client. Journal partition moved or ram disk. replica active

 5 server with 10 osd and 5 clients reading simultaneously one file each client. Journal partition moved or ram disk, replica active

Conclusion

- Ceph has a lot of capability and is extremly reliable
- On our hardware it doesn't perform at maximum possible but there are TONS of tune factors maybe someone has been missed
- It has an extremly active and responsive mailing list where the developers answer very quickly
- CephFS has some problems but looking their roadmap, they want to improve this aspect in the near future
- The learning curve is not linear, in order to understand how this filesystem works and how to tune it in good way is necessary understand very well h the data are accessed and in which way ceph places the data. (PG – POC – CRUSH MAP – MON MAP etc)

Related Work

- We have read some other tests about ceph perfomed by INFN-Bari and Cern
- The works are being presented on last CHEP 2013 conference and Hepix 2014
- Every team reach our same conclusions:
 - Chep is very interesting as storage solution.
 - it has some performance problems

Cern related Work

 In particular the Cern's group tried this filesystem in a HUGE environment and they did't reach a performance level in line

Department

with their test environment

CERN **Our 3PB Ceph Cluster**

48 OSD servers		5 monito	rs
Dual Intel Xeon E5-2650	D	ual Intel Xeon L	5640
32 threads incl. HT		24 threads in	ncl. HT
Dual 10Gig-E NICs	D	ual 1Gig-E NICs	5
Only one connected		Only one cor	nnected
24x 3TB Hitachi disks	3)	x 2TB Hitachi sy	vstem disks
Eco drive, ~5900 RPM		Triple mirror	
3x 2TB Hitachi system disks	48	8GB RAM	[root@p05151 Total writes
Triple mirror			Write size: Bandwidth (M
64GB RAM			Average Late
	_		[root@p05151 Total reads
			Read size: Bandwidth (M
			Average Late

http://indico.cern.ch/event/214784/session/6/contribution/68/material/slides/0.pdf •

INFN-BARI Related work

• At INFN-Bari site they has arrived at our same conclusions

Ceph @ Hepix 2014 1/2

Ceph at the UK Tier 1

George Ryall (STFC) James Adams (STFC), Alastair Dewhurst (STFC), Rob Appleyard (STFC), Kenneth Waegeman (UGent) HEPiX Annecy-Le-Vieux, May 2014

- Ceph looks promising as a technology but currently has gaps in it's documentation lack of support for production use of CephFS is concerning
- Some inconsistencies in configuration. Pool numbers rather than names need to be specified, poor documentation on pools and assigning sections of file system to pools. Administrative interfaces often frustrating and not intuitive to use.

http://indico.cern.ch/event/274555/session/16/contribution/33/material/slides/1.pdf

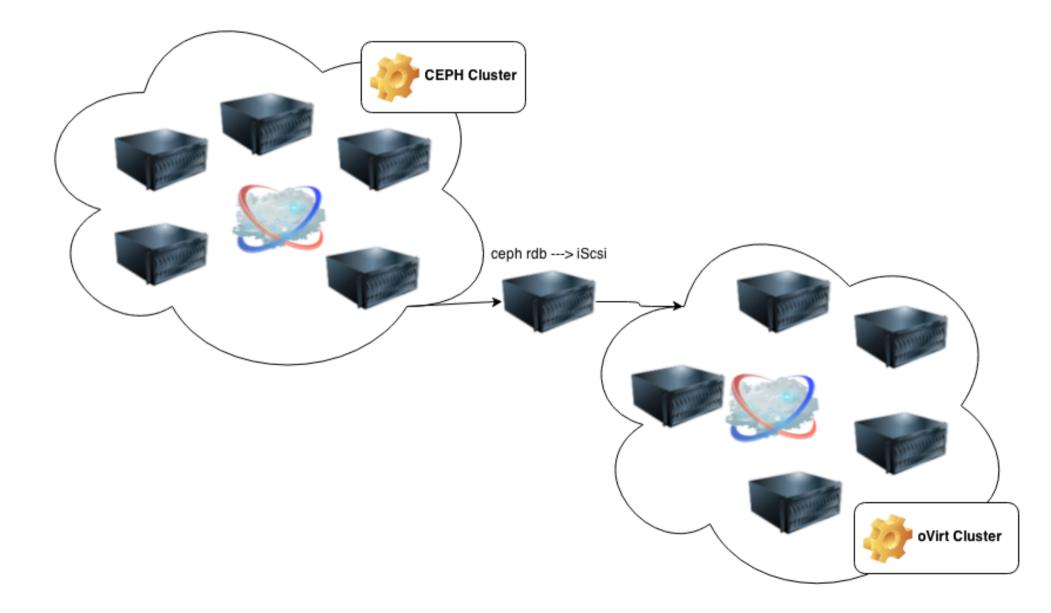
Ceph @Hepix 2014 2/2

Ceph @ CERN: one year on...

Dan van der Ster (daniel.vanderster@cern.ch) Data and Storage Service Group | CERN IT Department

HEPIX 2014 @ LAPP, Annecy

Same as CHEP conference with only some relevant adds: • "For block storage, make sure you have SSD journals"


• "Still young, still a lot to learn, but seems promising."

http://indico.cern.ch/event/274555/session/16/contribution/10/material/slides/1.pdf

Use Case @ CNAF

- In collaboration with Servizi Nazionali
- We have attached a "pool" of ceph to oVirt infrastructure via an iScsi Export
- We have migrated some virtual machine on it

Structure Export

Questions?

Thanks