Programming ExaScale Systems

Tim Mattson
Parallel Computing Lab

Acknowledgements: I had help on this presentation from
the following people at Intel ... Jeff Hammond, Rob van
der Wijngaart, Srinivas Sridharan, and Romain Cledat

Agenda

» * Preliminaries:
— Setting the stage for a conversation about Exascale computing.

* Methodologies:
— Benchmarks, dirty hands, and the NIH syndrome.

* The landscape of Exascale runtimes
— Who are we watching?

 Are tasks a productive path?
— Some suggestive but inconclusive results

* The ACR program
— Another spelling of OCR (a task based runtime)

Preliminaries: Some definitions

« ExaScale Computer: An ensemble of nodes with aggregate
performance of 108 operations per second when running a
single exascale application.

« ExaScale Application: An Application composed a vast
number of interacting tasks for which a single invocation scales
to make effective use of the full exaScale System.

« ExaSkeptic: A curmudgeon who questions the sanity of trying
to build an exaScale computer requiring applications with
O(billion) concurrency and a 20 MWatt power budget by 2020.

Cloud
A ,g-n'ﬂjof 1000 petaFLOP computers is not an ExaScale computer.
A parameter sweep problem is not an ExaScale Application.

Preliminaries: Concerns of an ExaSkeptic

« Most scientists are still trying to figure out what to do with
PetaScale ... why are we so eager for exaScale?.

« Most of our collective energy should be directed towards
mega-PetaScale
— Open Standard programming models (MPI, OpenMP, OpenCL)

— Frameworks that support common patterns ... programmers write
apps by plugging mostly serials patches into these frameworks.

* If we build an exaScale machine in 2020 running at 20
MWatts ... will it be so bizarre that the techniques utilized
are unlikely to inform what we do in mainstream HPC?

But for now ... I will suppress my ExaSkeptic mindset
and “drink the cool-aid”.

*Third party names are the property of their owners.

2 pathways to Exascale
Runtime Research

[

Evolutionary]

(e.g. MPI+X) (e.g

Revolutionary
. OCR)

-

Systemic Exascale Challenges

~N

[System Utilization] l QIVIanalgmg l [Data movement cost]

i Load Imbalance] [Fault Tolerance] [

Scalability

)

5

2 pathways to Exascale
Runtime Research

Evolutionary
(e.g. MPI+X) (e.g. OCR)

Revolutionary]

Qvstemic Fxascale Challenaes

\

We love MPI+X and believe it can be made to work if
programmers use new features in MPI 3 (or maybe MPI 4).

can focus exclusively on revolutionary approaches.

MPI+X is the “status quo” and is well taken care of ... so we

v

J

Agenda

Preliminaries:

— Setting the stage for a conversation about Exascale
computing.

Methodologies:

— Benchmarks, dirty hands, and the NIH syndrome.
The landscape of Exascale runtimes

— Who are we watching?

Are tasks a productive path?

— Some suggestive but inconclusive results

The ACR program
— Another spelling of OCR (a task based runtime)

How to design a great supercomputer?

 Hardware is only useful to the extent it helps
you solve problems you care about.

* Therefore, you must understand the

application software people will run to guide
hardware design.

High Quality Benchmarks are essential for effective
system design.

The number one benchmark in use today!

* MP Linpack and the Top500 list. It’s a lot of fun ... provides a far
reaching, historical performance metric.

PERFORMANCE DEVELOPMENT

o

100 PFLOP/S o o - e o
o & — -

— ° Z

10 PALOPS Sum _ o ¢ * r o~
I s * e & @

1 PILOFS e ® .

e @ e 8 @
| | I ¢ ol B s 4 BB OB 134 TP
100 TFLOPIS s * ° * o 8 8 ® @ g
o ®] o O f

10 TFLOPIS m e & @ . ar 3 1 o * .

— . o L oy g U0 N=500 _ o ® °

1 TFLOPS P «* "

59.7 cs1o0: [P = .
100 GFLOP/S 2 B B R R R Y X &
]
10 GFLOP/S S

& []
0.4 croes e *
1 GFLOP/S g

1993 1994 1995 1996 1997 19398 19%9 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 20010 20m 2012 2013 2004 2005 20

 Most real applications don’t look anything like MP-Linpack.

The drive to “set records” has led to machines of questionable value.
Focusing on the wrong benchmark has damaged HPC.

HPCG: A Better benchmark?

 HPCG (High Performance Conjugate Gradient) closely
approximates real applications ... so it’s a “better” benchmark.

108
}
-

107 * &

$ é
I ‘134113

10° * Rpeak

Flon/s

10° L .
bl N

Source: Linear algebra for sparse matrices
10% - from Big Data Analytics, Piotr Luszczek, UT

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Rank

But as applications continue to evolve (e.g. shift to big data and graph
analytics) maybe HPCG will be just as misleading as MP-Linpack.

The only rational approach to long
term benchmarking?

* Give up ... Nobody can confidently predict the
key future workloads. So don’t even try.

* QOur conjecture ...

— experienced application programmers know the
sorts of scalable operations they will depend on.

— Therefore, benchmark those scalable ops ... a
machine that gets those ops right will most likely be
good for the apps we will care about in the future.

11

The Parallel Research Kernels version 1.0

PRK: Low level constructs that capture the essence of what paraliel
programmers require from parallel computers.

Dense matrix transpose
Synchronization: global (collective) and point to point
Scaled vector addition (Stream triad)*

Atomic reference counting, both contended and uncontended
(locks/TSX)

Vector reduction

Sparse matrix-vector multiplication

Random access update

Stencil computation

Dense matrix-matrix multiplication ("DGEMM)
Branch (inner-loop conditionals + PC panic)*

*embarrassingly parallel

12

But don’t we need real apps?

e Real applications must deal with all the messy
details C.S. researchers try to avoid

— Legacy code
— The ugly “boundary cases”
— Users

* These “messy details” are essential ... so they
must be addressed.

* We will find a set of proxy apps to work with and
a small number of full apps ... stay tuned.

Our approach

Drive the research by writing lots of apps/code.

If you don’t get your “hands dirty” working with
real code, you can be easily fooled by hype.

Strenuously reject the Not Invented Here
Syndrome:

Our goal:

— Find the “Franken-runtime” that really works.

e We call this Mary ... named after Mary Shelly (or our trusty
admin ... Mary McCargar-van Arkel). First there was Ada,
then the great Linda programming language, and now Mary.

Agenda

Preliminaries:

— Setting the stage for a conversation about Exascale
computing.

Methodologies:

— Benchmarks, dirty hands, and the NIH syndrome.
The landscape of Exascale runtimes

— Who are we watching?

Are tasks a productive path?

— Some suggestive but inconclusive results

The ACR program
— Another spelling of OCR (a task based runtime)

CHARM++ (Sanjay Kale, UIUC)

CHARM++ is a message-driven execution model
supporting an actors programming model.

Based on message driven relocatable objects.

— Objects created one-by-one (explicit tasks) or in groups
(chare-arrays or chare-groups) to express data-parallel
algorithms.

Charm++ uses over-decomposition with concurrent
schedulers that exploit parallel slackness to keep the
load balanced (and hide latency).

Relocatable data-block and objects plus local check-
pointing and message logging to support resilience.

http://charm.cs.uiuc.edu/

Global Arrays (PNNL/ANL)

GA is a global view data model and SPMD execution
model that assumes replicated, static distributed or
dynamic distributed processing.

GA is built upon flexible RMA and bulk synchronous
data operations and (unfortunately)

GA encourages the use of shared counters for dynamic
load-balancing. Multiple research efforts show work-
stealing is a superior approach.

GA template is FORALL(data): Get-Compute-Update.

GA allows process-ID (procid) agnostic code and
supports resilience through RAID-like data replication.

http://hpc.pnl.gov/globalarrays/

APGAS (asynchronous PGAS)
Used to describe X10 and Chapel, not
traditional PGAS (UPC, CAF, SHMEM, ...).

Locales/places for locality+hierarchy as in MPI
but not PGAS

Begin-sync/spawn-finish for asynchronous
tasking

Violates Mattson’s Law (No New Languages!)

Assuming magical compiler+runtime, APGAS
surely can do anything!

Honorable Mentions ...

* HPX

— A many-tasking runtime system based on
relocatable PGAS objects and a dataflow model,
implemented using asynchronous, remote method
Invocation.

* Legion
— event driven task model ... similar to OCR.

Agenda

Preliminaries:

— Setting the stage for a conversation about Exascale
computing.

Methodologies:

— Benchmarks, dirty hands, and the NIH syndrome.
The landscape of Exascale runtimes

— Who are we watching?

Are tasks a productive path?

— Some suggestive but inconclusive results

The ACR program
— Another spelling of OCR (a task based runtime)

More definitions

 Work: The sequence of operations defined by an execution of a
program.

« Unit of execution (UE): an agent that advances the work defined by an
executing program.

« Data: The dynamic state embodied by the execution of a program.

 Memory: the system that holds the data available to an executing
program

« Task: A logically related sequence of operations and its associated data
environment.

21

Exascale SW Issues

ExaScale Assumptions

Parallelism ~O(Billion)

MTBF<<App_runtime

Global checkpoints unacceptably slow
relative to computation time

Data Movement dominates energy
and performance

Software lifespan is greater than
hardware lifespan

22

Exascale SW Issues

ExaScale Assumptions Response ...
Parallelism ~O(Billion) Amdahl’s law still applies. Hide
overheads ... oversubscription?

Requires decoupling of work from the Asynchror;y? Aggressive |06}?d
UEs that carry it out ... i.e. task based balancing? All of the above

execution models. N

Resilience must be built into the
MTBF<<App_runtime runtime system ... and probably the
programming models and algorithms
Global checkpoints unacceptably slow | as well.

relative to computation time

Data Movement dominates energy Abstract the hardware but don’t’ hide
and performance it ... programmers must be able to
control how data maps onto memory.

Software lifespan is greater than Portability is essential ... and the
hardware lifespan performance better by “mostly”
portable.

Why do | believe in the promise of task

based systems

« Consider the following two examples
— OpenCL matrix multiplication
— Linear Algebra expressed as a DAG of tasks

24

Blocked matrix multiply: kernel

#define blksz 16

__kernel void mmul(
const unsigned int N,
__global float* A,
__global float* B,
__global float* C,
__local float* Awrk,

/I upper-left-corner and inc for Aand B
int Abase = Iblk*N*blksz; int Ainc = blksz;
int Bbase = Jblk*blksz; int Binc = blksz*N;

/I C(Iblk,Jblk) = (sum over Kblk) A(Iblk,Kblk)*B(Kblk,Jblk)
for (Kblk = 0; Kblk<Num_BLK: Kblk++)

local float* Bwrk {
{ —local float” Bwrk) /ILoad A(Iblk,Kblk) and B(Kblk,Jblk).
: : /[Each work-item loads a single element of the two
int kloc, Kblk; /lblocks which are shared with the enti Kk
float Ctmp=00f, OCKS wnich are snharea wi € entire work-group

. Awrk[iloc*blksz+jloc] = A[Abase+iloc*N+jloc];
I/ compute element C(i,j) . : _ et e 1,
inti = get_global_id(0): Bwrk[iloc*blksz+jloc] = B[Bbase+iloc*N+jloc];
int j = get_global_id(1);
intj = get_global_id(1); barrier(CLK_LOCAL_MEM_FENCE);
/I Element C(i,j) is in block C(Iblk,Jblk)
int Iblk = get_group _id(0);
int Jblk = get_group_id(1);

#pragma unroll
for(kloc=0; kloc<blksz; kloc++)
Ctmp+=Awrk[jloc*blksz+kloc]*Bwrk[kloc*blksz+iloc];

/Il C(i,j) is element C(iloc, jloc)

s i
int iloc = get_local _id(0); } ; ;
int jloc = get_local_id(1); oy _

int Num_BLK = N/blksz: C[*N+i] = Ctmp;

}

Matrix multiplication ... Portable Performance (in MFLOPS)

Case Corei7, HD

CPU Xeon Phi . NVIDIA Tesla
Graphics

Sequential C (compiled /O3) 224.4 1221.5
C(i,j) per work-item, all 8415 13591 3721
global '
C row per work-item, all 869 1 4418 4196
global
C row per work-item, A row 1038.4 24403 3534
private
C row per work-item, A 3984.2 5041 8182
private, B local
Block oriented approach 74051 38348
using local (blksz=16) 12271.3 (126322*) (53687*) 1139305

Block oriented approach

using local (blksz=32) 16268.8

Xeon Phi SE10P, CL_CONFIG_MIC_DEVICE_2MB_POOL_INIT_SIZE_MB =4 MB
* The comp was run twice and only the second time is reported (hides cost of memory movement.

Intel® Core™ i5-2520M CPU @2.5 GHz (dual core) Windows 7 64 bit OS, Intel compiler 64 bit version 13.1.1.171, OpenCL SDK 2013, MKL 11.0 update 3.

Intel Core i7-4850HQ @ 2.3 GHz which has an Intel HD Graphics 5200 w/ high speed memory. ICC 2013 sp1 update 2.
Tesla® M2090 GPU from NVIDIA® with a max of 16 compute units, 512 PEs These are not official benchmark results. You may observe completely
Third party names are the property of their owners. different results should you run these tests on your own system.

Task Based Algorithms & Runtime

http://icl.utk.edu/parsec

 Dataflow Scheduling Engine
» Distributed

« Task Placement through data affinity

« Allows to run the algorithm on any data
distribution

« (use 2D block cyclic for pert.)
« NUMA oriented

« Favor cache reuse
« Limit far accesses

- Manycore & Accelerators

« Tasklet system
« Automatic load balance

Data Distribution & Task Placement

1000 T 5 5 ! !
2D cyclic / 2D cyclic
- 800 b —_— 4
& _— ’
R R ~ Unif Rand /2D Cyclic |
5
e 400 S e e —
RS nif Rand / Owner Computes
— : : :
L y ‘ :
A~ 200 & e -
i i I i i

VN

DGEQREF, 16 nodes, 8 cores per node (dancer, IB20G)
(Tile size: 192x192. Process Grid: 4x4.)

8k x 8k 12k x 12k 16k x 16k 20k x 20k 24k x 24k

Matrix Size

Computing Tasks placement is defined by tiles affinity

When the data distribution of tiles changes, the tasks execute on different nodes

-

Agenda

* Preliminaries:

— Setting the stage for a conversation about Exascale
computing.

 Methodologies:

— Benchmarks, dirty hands, and the NIH syndrome.
 The landscape of Exascale runtimes

— Who are we watching
* Are tasks a productive path?

— Some suggestive but inconclusive results

m) . The ACR program
— Another spelling of OCR (a task based runtime)

Example: Execution Model (ACR*)

* Fine-grained, event-
driven (FGED) model
with sophisticated
observation

— work broken into small
tasks and relocatable
data regions

— explicit data-flow and
control-flow
dependencies

— system maps work and
data onto resources

— adapts based on (static
and dynamic)
observations

Algorithm

Programining \
Hero
programmer

Tuning Hints
& Policies

(ransltion, opdmization, proflling)

F:Stream

HT &,

cnc

Evironment
p :
Event-Driven Runtime

vy

o%) % %ﬂ e
O Twe= o
Pile of Work Control/Data Pile of Data Observation and
(EDT5s) Dependendes (data blocks) Adaptation
\
Extreme Scale Hardware

50

Source: Rob Knauerhase’s Cuyahoga review

*ACR: Advanced Compute Runtime: A Rice/Intel project to add advanced locality-aware/power-aware

scheduling to OCR

OCR

* OCR

— Open Community Runtime

— Developed collaboratively with multiple partners
(mainly Rice University, Reservoir Labs and Intel)

* The term ‘OCR’ is used to refer to
— A programming model
— A user-level API
— A runtime framework
— One of several reference runtime implementations

Dataflow programming model

mainEdt

Runtime maps the
constructed

: data-flow graph to

--- architecture

fiblterEdt

g PE PE PE I I I I I
: _] [[pgllwterconnectl P [| " [P

. SharedllC

fiblterEdt | [ELEE fagso
| er : E . LVIBL2
: a PElPElPElPE """""" I"’ PElPElPElPE

fiblterEdt

A non-blocking unit of work. Runnable once
all dependences are satisfied.

sumEdt

__

------------------ > Creation link: Source EDT creates destination

Dependence: Source EDT satisfies one of
destination’s dependences

doneEdt

_— Both creation and dependence link

High level OCR concepts
Events and

Accessible

data-blocks

Create Events and
other EDTs Data-blocks
for other EDTs
Event Driven Task (EDT) Globally visible namespace of data-blocks
— Uncoupled from the notion of a thread/core _ Explicitly created and destroyed
— Scheduled for exeuction when all required data- . " B
blocks and dependencies have been provided — Only available “global” memory
— Creates other EDTs and provides data-blocks to — Data-blocks can move
them

Dependences
— EDT, provides data to EDT,
— EDT, “triggers” EDT, with an event
— EDTs can create other EDTs

33

Example 1: Producer/Consumer

Producer
EDT

Producer
EDT

Consumer
EDT

Consumer
EDT

Concept OCR

* Dynamic dependence construction
* Focus on minimum needed for placement and scheduling

34

OCR execution model

* Event Driven Tasks (EDTs)

— An EDT is scheduled for execution after all its
dependences are satisfied

— The number of dependences must be known at
creation time

— Dependence satisfaction can occur in any order

— An EDT can, during its execution:
* Create other EDTs and data-blocks (DBs)
* Manipulate the dependence graph for future (not ready) EDTs

* Access stack and ephemeral local heap, but NO global
memory other than the data-blocks.

» Access data-blocks passed in as a dependence or created by
the EDT

— An EDT cannot block during its execution

e Data Blocks (DBs)
— Contiguous block of global memory visible to any EDT

Example 2a: Simple synchronization

Step 2-a Step 2-b
EDT EDT

Concept OCR

e Steps 1, 2-a3, and 2-b need not know about each others’
existence — they may all have been created by another EDT

36

Events

* Events used to:
— Satisfy one or more of an EDT’s dependents
— Dynamically change the flow graph

* Events capture the concepts of:

— Data dependence: data-blocks “flow” along the
edges

— Pure control dependence

Example 2b: Multiple dependences

Concept OCR

* Slots are used to order the dependences of an EDT (akin
to the order of arguments in a C function)

38

Slots of an EDT

 Each EDT dependence has one slot assigned to it
— Each slot can optionally receive a data-block

* Slots are initially unsatisfied; events connected to the
slot propagate the “satisfied” state

Add Event
Unconnected &W Dependence (Connected & W Satisfaction (Connected &
Unsatisfied J L Unsatisfied J L Satisfied

 An EDT becomes runnable once all of its slots are
satisfied, with the order of satisfaction unimportant

Finish-EDT

All EDTs have a completion event associated with them

— The event becomes satisfied when the EDT completes and
carries the data-block returned by the EDT

A finish-EDT’s completion event has a special semantic

— The event becomes satisfied when the EDT and all of its
children complete

— The event carries no data-block

Use cases

— Localized barrier-like synchronization

— Allows for an unknown number of ancestors

Note that no EDT “waits” for completion

Example 3: FFT with a finish-EDT

Setup EDT

__

I /

Finish EDT aufll

FFT(Odd)

Twiddle

Done EDT

41

Real programmers
look at code

OCR Hello world

 The OCR runtime system will run a programmer’s
EDT called mainEdt() to start an OCR program

#include<ocr. h>

ocrGuid_t mainEdt (

u32 paramc, ué4 paramv,
u32 depc, ocredtDep_t depv|])

PRINTF (' HelloWorld!'\n");

ocrShutdown () ;
return NULL_GUI

/ (i.e. not OCR Data blocks)

Variables passed into the EDT func.

\ Dependencies ... available
before an EDT is runnable

(Data Blocks or events).

D\

Shut down OCR (including other
active EDTs ... so you need to be
careful when you call this).

Real programmers
look at code

APl cheat sheet

EDT
— Task templates: ocrEdtTemplateCreate(), ocrEdtTemplateDestroy()
— Tasks: ocrEdtCreate(), ocrEdtDestroy()
DBs
— Datablock management: ocrDbCreate(), ocrDbDestroy()
— Datablock usage: ocrDbRelease()
Events
— Event management: ocrEventCreate(), ocrEventDestroy()
— Event satisfaction: ocrEventSatisfy()
— Dependence definition: ocrAddDependence()
Miscellaneous
— Entry point of OCR: mainEdt()
— Shutdown: ocrShutdown()

Real programmers

Producer-Consumer: mainEDT look at code

#include<ocr. h>

ocrGuid_t mainEdt ((parameters >, Cdependences) {

ocrGuid_t t1, t2, t3, edtl, edt2, edt3;
ocrGuid_t outProdDB, outConsEvt;

ocrEdtTemplateCreate(&t1, prod(), ...);
ocrEdtTemplateCreate(&t2, cons(), ...);
ocrEdtTemplateCreate(&t3, end(), ...);

ocrEdtCreate(&edtl, t1,...stuff ..., &outProdDB);
ocrEdtCreate(&edt2, t2, ...stuff ..., &outConsEvt);
ocrEdtCreate(&edt3, t3, ...stuff ..., NULL);

ocrAddDependence(&outProdDB, edt2, ...stuff);
ocrAddDependence(&outConsEvt, edt2, ...stuff);

ocrAddDependence(NULL, edtl, ...stuff);

// clean up code to release resources .. Not shown
return NULL_GUID:

All OCR objects referenced by a
Global Unique ID (GUID)

Templates for EDT creation ... to
connect function to EDT and define
patterns of parameters and
dependences

Create the actual EDTs ... output
GUIDs connected to post-slot/return
from EDT function.

Dependences created explicitly and
dynamically ... maybe a bit verbose
but the flexibility is empowering!

Trigger the first EDT to start the
computation

Real programmers

Producer-Consumer: EDT functions look at code

#include<ocr. h>

ocrGuid_t prod (....... ocrEdtDep_t depl]) { Create a data block to hold a single

int k; ocrGuid_t db1; int
ocrDbCreate(&db1, (void**)&Kk, sizeof(int) ...);
k[0] = 42; Return an event bound to the data
’ block. This is used to trigger other
return db1l; EDTs
}
ocrGuid_t cons (....... ocrEdtDep_t depl]) {
int data =(int*)dep|[0].ptr; Access the contents of a data block
PRINTF{“ | consumed %lu\n”, *data);
return dep[0].guid; Return an event bound to the guid of
} ’ the data block.

ocrGuid_tend (....... ocrEdtDep_t depl]) {

ocrDbDestroy{dep|0].guid); Clean up data blocks in memory and
ocrShutdown(); shutdown OCR.

return NULL _GUID;

~ OCR ecosystem

HTA [C:;\sf[ay | CnC I [HC J [2:;2]
PrOGTAINIING ... R i AR e e

CnC HC
| i) Rl J 7| Translator Compiler
Open l’ l’ l’ l \ 4
Community OCR API + Tuning Annotations]
Runtime ‘L
Il OCR targeting TG im Iementat(iz)ilz E
targeting x86 P :
Evaluation Low-level
platforms compilers :

FSim - TG Platforms -
Architecture :

Preliminary results

| Benchmark [| EDTversion | Ith JIth 4th Bth l6th 32th || Benchmark [EDTweraen | Thh 2t d4dh Sth I6th 3Xth
DIVAD-I OCE I 3R 2E 6.64 643 383 JAU-3D-TF OCE I8 414 TED 1417 355 I87TH
OMP 3o 365 762 8.56 578 846 OMP 19 215 1a2 412 742 1166
SWAFRM 181 400 638 .06 8.28 296 SWAPM 212 381 732 1374 248 1609
FLID-2D OCE 1.2 231 434 8.13 139 17.14 JACID-1 OCE 257 471 B33 846 8.35 671
OMP 083 029 036 095 141 246 OMP 333 570 1161 1259 1783 1367
SWARM 117 207 391 746 1181 1373 SWARM 216 591 793 11.14 1214 318
5-1D-5F OCE 0By 172 313 350 I0.3F 1504 LU OCE Ie8 277 521 T.33 BT 301
OMP 113 114 116 119 L1 1.28 OMP 057 078 094 057 059 098
SWAFRM 088 165 3l 3.74 9.73 il SWAPFM 202 28 470 6.91 7.71 1.33
G5-1D-0P OCE 098 190 3.6l 6.67 12.05 15214 MATMULT OCE 437 835 1505 2680 4571 43T
OMP 117 116 LI18 LI7 119 1.20 OMP 121 238 449 8.37 1378 1441
SWAFRM 0% 185 330 6.51 1151 11.88 SWAPM 445 B38 154% 2EET 4944 3553
5-3D-TF OCE I3 34 58 1051 37 HIs P-MATMULI OCE 137 I8 4% 851 JEX I Y]
OMP 1.7% 221 301 4.90 7.83 11.12 OMP 190 297 548 912 1598 Ib14
SWAFM 136 293 564 1064 2029 3171 SWAPRM 135 266 505 935 13.3% 382
G5-3D-27P OCE 182 336 6% 1295 471 3753 POISS50N OCE 046 04 114 171 1.43 1.00
OMP 206 316 5351 10.16 1886 2926 OMP 1oL 087 12 059 096 .84
SWABRM 184 352 680 1278 2445 37.1% SWAPFM 044 063 099 1.41 157 027
JAL-TDCOPY OCE 405 7 1333 IFes HEL O W FIM-3D OCE 300 3385 BaS I35 333 I74E
OMP 425 530 733 1260 1990 18.00 OMP 240 4359 BO3 1377 1906 2267
SWAEM 367 612 1134 2140 3551 937 SWARM 283 395 876 1802 1613 1234
JAC-2D-5P OCE. 171 322 6ll 11.08 1858 ILT2 SOKE DCE. 028 0356 098 L&5 .27 093
OMP 092 0952 091 1.13 1.40 219 OMP 062 101 1.59 2.66 442 .62
SWAFM 163 315 584 1063 1738 615 SWAPM 02 045 068 1.17 0.86 022
JAL-TD-SP OCE I38 300 5% 05T IERS IL=4 STFSM OCE 445 T3 I1Te Iver 1585y 1172
OMP 108 114 120 131 1.67 264 OMP &6 560 10352 19B4 37T 3005
SWAEM 130 3.00 558 1027 18353 1948 SWAPRM 282 415 7139 1304 1788 279
JAL-3D-2TP OCR 241 470 8% 1672 3lee MH.48 TEISOLV OCE 14 28% 4589 763 T.53 3.29
OMP 243 343 566 10.36 1887 2393 OMP 200 429 77T 1315 1867 23.28
SWAEM 240 455 875 1621 3067 M.51 SWAFPM 156 2 488 T.88 o7 1.37

Table 4. SWAEM. OCE and OpenMP performance in Gilops/s

* On some code, OCR matches or bests OMP

* Simple scheduler, no data-blocks (very preliminary but promising)
47

Preliminary results

[Benchmark [[EDT version | 1t R Eih T6th 32th || Benchmak [EDTversion | 1 Jth 4t T T6th 32t
DIVADT OCH o N« N 7 N N 83 JEC DT OCE 15 413 7B E1T 530 %E
OMP 30 565 782 886 876 B46 OMP 193 215 26 412 742 1266
SWARM 191 400 638 BO06 818 2.96 SWARM 212 381 732 1374 2484 2609

FOTD-D OCE z = z OCE 357 471 838 T B35 B.71
OMP OMP 331 570 1161 1989 1753 1367

SWARM OC R Ru Iesl 111 SWARM | 216 581 783 1114 1214 318

G5 I05F OCHE s OCE 86 =77 5.0 T3 TET 401

OMP - .y, i OMP 057 078 094 067 0.59 0.98

SWARM 088 165 3 11 574 973 311 SWARM 207 283 470 691 771 135

JAC-IDLCOPY UL K 103 157 33 1566 HIl 1350
OMP 425 5.30 71.33 12 19.90 18.00
.l T —
SWAERM 31.67 5.12 11 34 21.40 35.51 Q.37

105 !'_.-'_E-' oy LI T2 L St o - X] g & Y L SR | L Laci LW =™ oo T.I% ™ Th.r1 T = Tuiuw

206 316 551 10.16 1885 292§ OMP 101 097 102 0.99 0.96 0.84

184 352 680 1278 445 3719 SWARM 044 063 0.99 1.41 1.57 0.27
15 737 143 585 WAl O || FINSD OCHE T00 538 065 GE E4F 1738
/ 425 330 733 1260 1990 18.00 OMP 240 459 803 1577 2006 2267
i 367 612 1134 2140 3551 937 SWARM 281 505 976 1802 1623 1234

JAC D3P OCE I71 322 &1l 11.08 18985 2L.7: || SOR OCE 028 056 0.08 1 3 1.27 0.93

OMP 092 092 091 1.13 140 219 OMP 062 101 159 2686 4.42 6.62

SWARM 163 315 584 1061 1758 615 SWARM 026 045 (0.68 117 0.86 022
Y) OCH 38 300 5. 05F 1509 353 || SIESH OCE I3 758 1178 178 55 1177
OMP 109 114 120 131 167 264 OMP 366 560 1052 1984 3797 301s

SWARM 150 300 558 1027 1853 19.48 SWARM 28 415 739 1304 1788 279

JAC 3D 2P OCE 74l 470 &8¢ 16.72 3166 3443 || TEISOLY OCE T4 295 488 763 735 519
OMP 243 343 566 10.36 1887 2595 OMP 200 429 777 1515 1867 2338

SWARM 240 453 B8BTS 1621 3067 34.51 SWARM 156 284 488 788 9.77 137

* On some code, OCR matches or bests OMP
* Simple scheduler, no data-blocks (very preliminary but promising)

Table 4. SWAEM. OCE and OpenMP performance in Gilops/s

48

Preliminary results

| Benchmak || EDT version | Tth Ith Ith Eth I6th Tth || Benchmark || EDT weraon | Tt Tth Jth Eth I&th FTth |
DIV 3D-1 OCE 24 3E 4 a.6d 643 k] JATC-ID-TE OCE 118 414 TED 1417 2550 pli%e
OnP 3.02 5.65 T.62 B8.56 8.76 846 OMP 193 215 262 412 T42 12 66
SWAERM 1.91 4.00 6.38 B (I3 g ?S 296 SWAERM 212 381 T.32 13.74 2484 2600
FL¥ITY-2D gfﬁ%‘ = 8% 297 471 £.38 044 8.35 671
333 5.70 11.61 19.59 17.53 13.67
SWARM L SWARM | 216 591 793 1l14 1214 318
35-10-3F UCE OC R Ru Ies' s== OCE T8 272 321 733 Te7 40l
OnP . 22 Bt OMnP 0.57 078 094 &7 0.59 098
SWARMN 088 165 3_11 574 973 311 SWARM 202 293 470 £.91 el | 1.35
JAC-IDCOPY UL B, 103 .97 114 5.060 H.31 1150
OMP 425 5.30 7.33 12 19.90 18.00
SWARM 3.67 65.12 11.34 2140 35351 9.37
105 !'_-'_E- oy LI T2 L St o - X] g & Y L SR | Lo Lacl L0 =™ oo T.I% ™ Th.r1 TS = Tiwvw
2.06 3.16 5.51 10.16 1885 2926 H ” OMP 1.01 0.97 1.02 0.9 096 0.84
1.84 3.52 6.80 12.78 24.45 37.1% S‘.‘.ﬁlﬂ 0.44 0.63 .o9 1.41 157 0.27
405 T 1434 RN H.51 421,94 .00 338 963 1554 24.4F 1745
. B I 19.50 18.00 : 5 A 15.77 2906 2267
VW 3 3551 937 i ;
JAC ID-5F OCE ; R
OMP i .
SWARM . . }
JAL-I)-9P CLE . — — = — — 62 59 Iy
OnP 1.09 1.14 1.3 1. 31 1. 15'-’ 2 454 O}{F 3.6-!5 560 10.52 19 84 3797 3o1=
SWARM 1.50 3.00 5.58 1027 15.53 19.45 SWAERM 282 415 T30 13.04 1788 279
JAL-3D-2TR QCE 241 4.70 8.5 16.72 3l.66 3448 TEISOLY COCE 164 205 4 89 763 155 5.29
QNP 243 3.43 5.66 10.36 1887 2595 ONP 2.00 429 777 15.15 1567 1328
SWARM 240 453 875 16.21 30.67 .51 \ SWAERM 1.56 284 488 T88 77 1.37
Table 4. SWARM. OCE and 'DpenMP p&rf g in Glops/s
J OCR 164 295 489 7.63 1'55 529
OMP 209 42 177 1515 28467 2328
SWAERM 1.56 284 4 88 7.88 o TT 1.37

49

OCR Summary

OCR is not about what it is but what it isn’t.

— OCR is one possible result when one deletes every
concept that isn’t exascale-worthy.

Exascale needs data encapsulation:
— deprecate heap -> use (relocatable) datablocks.

Exascale needs encapsulation:

— deprecate procedural flow -> event-driven
(restartable?) tasks

OCR might be adequate as an exascale runtime
but it’s unclear how to map applications to OCR.

— HPC users want look-and-feel of MPI.

So is OCR the future of extreme scalability?

* OCRis Great!

— OCR is a great test-bed as we work out the details of how to
make task based systems work.

— OCR is a productive research vehicle for our collaboration with
Rice.

— Uncouples tasks from UEs and Data from Memory so we can
experiment with those features and how they help us with
reliability, load balancing and Performance/watt optimization.

* OCR has “issues”

— |t does not expose a platform model and therefore lacks
abstractions for programmers to manage locality.

— Data blocks do not provide functionality needed to support
collectives.

— OCR cannot express data parallelism

— OCR codes aren’t modular; the simplest example of that is
iterations. You cannot just take an OCR code segment and put it
in a loop. More ominously, if you change anything in your task
graph of dependencies, you have to reconnect all the “ducts.”

The challenge that scares me: Algorithms

« Exascale algorithms can not depend on checkpoint restart.
— Silent Errors ... you'll get them and not even know it.
— Checkpoint is massive data motion, which is to opposite of exa-style

* Need algorithms that make progress and converge to the right
answer even when faults occurs.

— Many machine learning algorithms map onto a master-less map-reduce
pattern and can tolerate faults.

— Some classes of linear algebra algorithms can progress around faults if
subsets of the computation can be made reliable (by replicating tasks).

— Stochastic algorithms

* Research question:

— Can we find fault resilient algorithms for the problems we care about for
exascale systems?

52

Conclusion/Next steps

* We know the problems to solve ... and OCR is a good
research vehicle at this time.

« But we have much work to do ... We have not settled on a long
term solution.

» Our project in PCL (the extreme scalability group) will engage
in a HW/SW co-design effort:
— Define a set of driving applications.
— Abstract them into a small set of fundamental design patterns.

— Access how key competing models (OCR, HPX,, CHARM++, etc) work
for the above.

— Adopt a current system and adapt it to our needs ... or as a last resort
create “yet another programming environment” that does solve the
problem (but it will not be a new language!)

« Stay tuned ... we will do this over the next few years! This will
not be solved over night.

53

Case Studies:

m) - Vector Reduction

— Scalability, modularity, composability & OCR
— Source: Rob Van der Wijngaart of Intel

« FFT

— Divide and conquer with OCR
— Source: Univ. OR undergrad project

54

Vector reduction, an example

* Objective (Parallel Research Kernel reduce):

— Compute element-wise sum of large collection (N)
of vector pairs

— Do this using various methods to demonstrate
performance implications

* Assumption:

— Vector pairs created concurrently by different
workers, spread across system, so need to be in
different Data Blocks and be created in different
EDTs

Three implementations,
distributed memory

 Naive serial:
— One worker combines all vectors
e Short vectors, asymptotically optimal:

— Workers create (binary) reduction tree

— Each node in tree combines two complete vectors, one
“local,” one “non-local”
* Long vectors, asymptotically optimal (Van de Geijn et
al.):
— Workers execute bucket reduce scatter in a number of
stages

— Workers execute MST gather to collect all reduced vector
snippets at one worker

EDTs can execute
concurrently, but
launch is serial

'R approach; naive §

Master worker
allocates array of
N OE1 guids: not

bottleneck '\ scalable
1. wamqﬁr
o Potential solutions:
e Build EDT launch trees for embarrassingly
2. C parallel sections (sigh); more scalable, but)ne
O bottleneck at extreme scale To
sd * Do not use runtime-produced guids, but let
3 C user assign explicit values (cf tags in MPI) N
fJ ln-\v II \ . e re
ents, Sums a VECt Master worker OUtpUt
EDTs can execute
concurrently, but DE3 allocates jarray of
launch is serial . N OE2 guids: not _
vottlenack | Wrapup EDT, which___ scalable F3, then

shuts down runtime

Implicit assumption: “create” done by master worker

OCR approach; naive serial

. Create N allocation EDTs; each allocates a DB for
one vector, and satisfies output event OE1

. Create N initialization EDTs, each waits on one
OE1, (re)initializes corresponding vector, and
satisfies output event OE2

. Create one summation EDT, which waits on N
OE2 events, sums all vectors, satisfies output

eve nt OE3 iterate

. Create wrapup EDT, which waits on OE3, then
shuts down runtime

Graph representation

allocate OE1 @ OE1l

—

o ol

=

OE1l OE1l OE1l

— NN\

\

redulse

e Each Initialize EDT depends on
different OE1, or on OE3 (cannot
duplicate vectors, so must avoid race)

OE3
iterate
EDT satisfying
© event X
Target waits
sink On event X

Observation

Modularity/composability:

* Do not want to or cannot inspect/change
details of dependency structure of program
modules

* Can wrap phases before and after loop, as
well as iteration body, in Finish EDTs—
unscalable fork/join style parallelism

OCR approach 2; naive serial

. Create N allocation EDTs, each of which allocates
a DB for one vector, and satisfies output event
OE1l

. Create tree of N intialization EDTs; each leaf
waits on one OE1], initializes the corresponding
vector, and satisfies output event OE2

. Create one summation EDT which waits on N

OE2 events, sums all the vectors, and satisfies
output event OE3

. Create a wrapup EDT which waits on OE3 and
then shuts down the runtime

Graph representation

allocate OE1l

initialize

reduce

S\
<,
~

How does EDT know it is leaf without
asking how many other leaves already

created (global counter)?

Give EDT sequence # specific to . O_) EDT creates
location in tree. target EDT

OCR approach 3; binary reduction tree

1. Create N allocation EDTs, each of which allocates
a DB for one vector, and satisfies output event
OE1l

2. Create tree of N initialization EDTs; each leaf
waits on one OE1], initializes the corresponding
vector, and satisfies ouput event OE2

3. Create tree of combine EDTs; each waits on two
OE2s. Root combine EDT satisfies output event
OE3

4. Create a wrapup EDT which waits on OE3 and
then shuts down the runtime

Graph representation

A >

(O 7 ¢
initialize <r 21"@ @ -
| G @\ NS
reduce < ’@ ' OE3

\

Who creates combining EDTs
(OE3)? The empty eggs! sink

Observations

Need to know what comes after a certain module (e.g. how
reduction takes place) to write that module: Causatity”

Trees abound
— Crowns intertwined
— Cannot afford to build new trees often at exascale
— Cannot create all EDTs in single tree instantiation
WiDdhslariy
* Task queue overflow
* Don’t always know number of iterations
Guids galore
— Where to store? Must distribute.
— How to pass to other EDTs?

— If replaced by user assigned IDs, how to guarantee object has
come into existence when referencing ID?

Ponder this

Premise:
* OCR was not designed for data parallelism or static
load balancing

* OCR was designed for exascale

Question:

Is there a reason to believe that OCR will scale better

on problems that map to graphs with complicated,
dynamically discovered dependencies than on those
that map to simple graphs that can be load balanced

statically? If yes, why?

Case Studies:

* Vector Reduction
— Scalability, modularity, composability & OCR
— Rob Van der Wijngaart of Intel

) . FFT

— Divide and conquer with OCR
— Univ. OR undergrad project

67

Background

* Final year undergraduate project in Oregon State University

* OCR implementation of Fast Fourier Transform
— Cooley-Tukey algorithm
— Evolution from serial version
— OCR behavior

This research was, in part, funded by the U.S. Government, DOE and DARPA. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the U.S. Government.

LLNL Summer School 07/08/2014

68

Algorithm

* Divide-and-conquer

* Data-flow friendly

x[0]o—>—] S Woxtm
E[1] "

2]o | . X[1]
M2 NJ2- point \/ﬁk

x[4]o—>— DFT EWFIZ]

x[6]o—»— 53] X[3]

xX[5]o—»— DFT o[2] ng[ﬁ]

xX[7]o—»— O13] W;’,X['?]

Source:Wikimedia Commons

LLNL Summer School 07/08/2014

69

Serial implementation

Source:Wikimedia Commons

70

LLNL Summer School 07/08/2014

Naive implementation

x[0]
x[2]
x[4]

x[6]

x[1]
x[3]

x[5]

x[7]

Source:Wikimedia Commons

LLNL Summer School 07/08/2014 [

Bounded implementation

X[0]o——

X[2]o—»—

X[4]o—>—

x[6]o—»—

X[].]o_p_

X[3]o—»—

X[5]o—»—

X[7]o—»—

Source:Wikimedia Commons

LLNL Summer School 07/08/2014 2

Bounded implementation with datablock

!
i

Source:Wikimedia Commons

LLNL Summer School 07/08/2014 3

Behavior

Version No. of EDTs Mean EDT Load variance Running time
Longevity (us) across cores (%) | (s)

Serial 1673420 70.7 3.36
Naive parallel 12582913 253 5.1 877.0
Bounded parallel 1793 1982 2.7 0.46
Bounded parallel 1793 1946 2.9 0.45

w/ datablocks

* OCR X86 running FFT on 232 sized dataset

— 2.9GHz Xeon 16 cores; 8 cores made available to OCR

 Balance to be achieved between number and size of EDTs

LLNL Summer School 07/08/2014 74

Summary

e Serial implementation

* Naive parallelization — recursive division of DFT

* Bounded parallelization — division bounded by a working set
size

* Bounded parallelization with datablocks — additionally, use 3
datablocks (input, real, imaginary portions)

* Possible next steps for better parallelism
— Finer datablocks
— Staggered creation of EDTs in the twiddle phase

LLNL Summer School 07/08/2014 75

