
Daniele Andreotti - 20/02/2015

Your Logo Here

Continuous Integration
and Testing with Docker

Daniele Andreotti - 20/02/2015 2/30

LOGOOverview

A good approximation: Docker is a chroot environment on steroids.

Docker runs Unix processes, but it gives a better isolation and control over
resources utilization.

Docker is based on a client-server architecture

Both the Docker client and the daemon can run on the same system, or you can
connect a Docker client to a remote Docker daemon.

Expose a well defined RESTful API.

Daniele Andreotti - 20/02/2015 3/30

LOGOImages and Containers

A Docker image is a read-only template.

For example, an image could contain an Ubuntu operating system with
Apache and a web application installed.

A container is a running instance of an image.

Each container is an isolated application platform.

Daniele Andreotti - 20/02/2015 4/30

LOGOContainers vs. VMs

Daniele Andreotti - 20/02/2015 5/30

LOGOContainers

Kernel shared among the Docker container (the guest) and the
“hypervisor” OS

Docker can run on other platforms through a further
virtualization layer (e.g. Boot2Docker for OSX or Windows)
which:

➔ creates a thin Linux-VM where running the docker daemon
➔ installs the docker client on the host
➔ talks via HTTP/REST to the daemon

Daniele Andreotti - 20/02/2015 6/30

LOGO

Namespaces

Like 'chroot', namespaces allow processes to see some aspects of the operating system
independently.

This provides a layer of isolation: each container receives its own network stack and process
space, as well as its instance of a file system.

Control groups

Is a Linux kernel feature to limit the resource usage of certain processes.

It's a more flexible 'nice'.

For example, limiting the memory available to a specific container.

Under the hood

Daniele Andreotti - 20/02/2015 7/30

LOGOUnion file systems

0

http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/

The filesystem of an image consists of a series of layers. Docker
makes use of union file systems to combine these layers into a single
image.

The boot file system contains the bootloader and the kernel.

The root file system includes the typical directory structure of a Unix-
like operating system.

In general, the contents and organization of the root file system are
usually what make software packages dependent on one distribution
versus another. Docker can help solve this problem by running multiple
distributions at the same time.

Docker images are built from these base images using a simple,
descriptive set of steps. Each instruction creates a new layer. These
instructions are stored in a file called a Dockerfile.

There is no need to distribute a whole new image, just the update,
making distributing Docker images faster and simpler.

Docker can make use of several union file system variants including:
AUFS, btrfs, DeviceMapper, ...

http://developerblog.redhat.com/2014/09/30/overview-storage-scalability-docker/

Daniele Andreotti - 20/02/2015 8/30

LOGOExample 1

Run a simple container on a given image

List available images:

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE

centos centos6 25c5298b1a36 10 weeks ago 215.8 MB

Run the container on the image providing a basic command

$ docker run centos:centos6 echo "Hello world"
Hello world

Daniele Andreotti - 20/02/2015 9/30

LOGOExample 2

Starting from a Dockerfile, build a simple image and run a container on it interactively
The base image is downloaded from the official registry (Docker Hub)

$ more /etc/issue
Ubuntu 12.04.5 LTS \n \l

$ cat Dockerfile
FROM centos:centos6

$ docker build tag test/centos6:1.0 .
Sending build context to Docker daemon 2.048 kB
Sending build context to Docker daemon
Step 0 : FROM centos:centos6
centos:centos6: The image you are pulling has been verified
511136ea3c5a: Pull complete
5b12ef8fd570: Pull complete
a30bc9f3097e: Pull complete
Status: Downloaded newer image for centos:centos6
 > a30bc9f3097e
Successfully built a30bc9f3097e

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
test/centos6 1.0 25c5298b1a36 10 weeks ago 215.8 MB

$ docker run interactive tty test/centos6:1.0 /bin/bash
[root@984f50e8f28c /]# more /etc/issue
CentOS release 6.6 (Final)

GUEST

HOST

Daniele Andreotti - 20/02/2015 10/30

LOGOExample 3

Run a container mounting a volume in read/write mode from the host

$ mkdir /tmp/test
$ touch /tmp/test/data.txt

$ docker run -it -v /tmp/test:/opt/:rw centos:centos6 /bin/bash

[root@5b1e81c4d70e /]# ls -l /opt/data.txt
-rw-rw-r-- 1 1000 1000 0 Feb 16 21:34 /opt/data.txt
[root@5b1e81c4d70e /]# echo "Hello" > /opt/data.txt
[root@5b1e81c4d70e /]# exit
exit

$ cat /tmp/test/data.txt
Hello

Daniele Andreotti - 20/02/2015 11/30

LOGODocker networking

A virtual bridge interface (docker0) is created at the host level when the service is started

For each container two “peer” interfaces are created:
➔ one at the host level (e.g. veth5fb53c8)
➔ another which becomes the eth0 for the container

Communication between containers happens through the bridge interface that automatically
forwards packets between any other network interfaces that are attached to it.
By binding every veth* interface to the docker0 bridge, Docker creates a virtual subnet
shared between the host machine and every Docker container.

Daniele Andreotti - 20/02/2015 12/30

LOGO

Docker registry is basically a repository for images.

You can manage images:
● by using the public repository, DockerHub
● or by using by using a private repository

Every single command in a Dockerfile yields a new Docker image with an
individual id.

This commit can be tagged for easy reference with a Docker tag.
● Tags are the means to share images on public and private repositories.

What is docker-registry?

Daniele Andreotti - 20/02/2015 13/30

LOGOSecuring docker registry

Private Docker registry comes without support for authentication:

➔ Anyone who knows registry URL can push their own Docker
images. So we need some authentication.

We setup nginx in front of Docker registry for basic authentication and SSL
encryption.

Daniele Andreotti - 20/02/2015 14/30

LOGOTag

● When you build a Docker image using a Dockerfile, you can set a tag for the
final image by passing the parameter -t <tag>.

● The syntax for a tag is repository:[tag].

● You can share a demo image to Docker Hub by first building, and then pushing
it:
> docker build -t <username>/demo .
> docker push <username>/demo

where <username> is the name registred in DockerHub by the user.

● In case you want to use a private registry, you need to set the URL to your
private registry as the username. First tag it accordingly and then push it,
assuming your registry is listing on localhost port 5000:
> docker tag <username>/demo localhost:5000/demo
> docker push localhost:5000/demo

Daniele Andreotti - 20/02/2015 15/30

LOGOPush/Pull images example

$ docker images
REPOSITORY TAG IMAGE ID CREATED VIRTUAL SIZE
italiangrid/base latest c0493b41d761 9 days ago 778.1 MB

$ docker tag f italiangrid/base cloudvm128.cloud.cnaf.infn.it/italiangrid/base

$ docker push cloudvm128.cloud.cnaf.infn.it/italiangrid/base
The push refers to a repository [cloudvm128.cloud.cnaf.infn.it/italiangrid/base] (len: 1)
Sending image list
Pushing repository cloudvm128.cloud.cnaf.infn.it/italiangrid/base (1 tags)
Image 511136ea3c5a already pushed, skipping
Image 5b12ef8fd570 already pushed, skipping
Image 510cf09a7986 already pushed, skipping
Pushing tag for rev [e8b9b5527607] on {https://cloud
vm128.cloud.cnaf.infn.it/v1/repositories/italiangrid/base/tags/latest}

$ docker pull cloudvm128.cloud.cnaf.infn.it/italiangrid/base
Pulling repository cloudvm128.cloud.cnaf.infn.it/italiangrid/base
e8b9b5527607: Download complete
511136ea3c5a: Download complete
5b12ef8fd570: Download complete
510cf09a7986: Download complete
Status: Downloaded newer image for cloudvm128.cloud.cnaf.infn.it/italiangrid/base:latest

Daniele Andreotti - 20/02/2015 16/30

LOGOOur CI and CD infrastructure

Continuous Intergation service

Cloud provisioning stack

OS platform running Docker

Revision control system

Several components are involved in the setup of our Continuous Integration
(CI) and Continuous Deployment (CD) workflow

Daniele Andreotti - 20/02/2015 17/30

LOGOJenkins and Github

Jenkins provides continuous integration services for software
development. Builds can be started by various means,
including being triggered by commit in a version control system,
scheduling via a cron-like mechanism, building when other
builds have completed,

GitHub is a web-based Git repository hosting service, which
offers all of the distributed revision control and source code
management (SCM) functionality of Git as well as adding its
own features. Unlike Git, which is strictly a command-line tool,
GitHub provides a web-based graphical interface

Daniele Andreotti - 20/02/2015 18/30

LOGOContinuous Integration (CI)

Commit Start CI process

Deployment and testReport

Daniele Andreotti - 20/02/2015 19/30

LOGOOpenStack and CoreOS

OpenStack is a free and open-source cloud computing software
platform. Users primarily deploy it as an infrastructure as a
service (IaaS) solution. The technology consists of a series of
interrelated projects that control pools of processing, storage, and
networking resources throughout a data center—which users
manage through a web-based dashboard, command-line tools, or
a RESTful API.

CoreOS is an open source lightweight operating system based on
the Linux kernel. CoreOS provides no package manager as a way
for the distribution of applications, requiring instead all applications
to run inside their containers.

Daniele Andreotti - 20/02/2015 20/30

LOGOWhy CoreOS?

At the present time there is an issue in Docker which prevents
deleted containers to free mapped disk space. It's related to a
kernel problem with DeviceMapper which affects the RedHat
family:

https://github.com/docker/docker/issues/3182

Based on our experience, CoreOS is the most stable distribution
for using Docker in production:

➔ based on btrfs file system

➔ kernel version (3.18)

https://github.com/docker/docker/issues/3182

Daniele Andreotti - 20/02/2015 21/30

LOGOStoRM deployment in CI with Docker

A deployment test implies:

A full installation of the StoRM application in a clean environment
A step to configure the application components
The execution of a dedicated testsuite against the deployed application

Two kinds of deployments:

Clean: install the last version of StoRM and test it
Update: install the previous version of StoRM, update to the last version

and then test it

The goal is to perform deployment tests in Docker integrating the process with our
Continuous Integration workflow

For our purposes, the containerazation of StoRM is achieved by including more
services into a single container

Daniele Andreotti - 20/02/2015 22/30

LOGOStoRM deployment tests

container container

Storm testsuite Storm deployment

A deployment test is executed
by linking two containers:

● The container which deploys the
application runs in background

● The container which runs the testsuite
starts in foreground and waits until the
StoRM service is properly configured
and active on the first container

● Inter-container communication

● Ports for required services exposed
when the service image is defined

LINK

Daniele Andreotti - 20/02/2015 23/30

LOGOStoRM deployment image

FROM italiangrid/base

ADD . /

RUN chmod +x /setup.sh

RUN /setup.sh

EXPOSE 8080 8085 8086 8443 8444 9998

setup deployment script

RUN chmod +x /deploy.sh

setup StoRM daemons

RUN chmod -R +x /daemons

Italiangrid/base

STORM

Dockerfile

Daniele Andreotti - 20/02/2015 24/30

LOGOStoRM testsuite image

FROM italiangrid/base

add and run setup

ADD . /

RUN chmod +x /setup.sh

RUN /setup.sh

setup for the tester user

WORKDIR /home/tester

ENTRYPOINT /setup_testsuite.sh

Dockerfile

Daniele Andreotti - 20/02/2015 25/30

LOGOImages management in CI

LOCAL IMAGES REGISTRY

PUSH

Build slave for
Docker images

P
U
L
L

Authentication
required

Slave Slave

Daniele Andreotti - 20/02/2015 26/30

LOGOExample of containers linking

run StoRM deployment and get container id

deploy_id=`docker run d e "STORM_REPO=${STORM_REPO}"
e "MODE=${MODE}" e "PLATFORM=${PLATFORM}" \

h dockerstorm.cnaf.infn.it \

v $storage_dir:/storage:rw \

v $gridmap_dir:/etc/gridsecurity/gridmapdir:rw \

v /etc/localtime:/etc/localtime:ro \

${REGISTRY_PREFIX}italiangrid/stormdeploymenttest \

/bin/sh deploy.sh`

Daniele Andreotti - 20/02/2015 27/30

LOGOExample of containers linking

get names for deployment and testsuite containers

deployment_name=`docker inspect f "{{ .Name }}" $deploy_id|cut c2`

testsuite_name="tslinkedto$deployment_name"

run StoRM testsuite when deployment is over

docker run link $deployment_name:dockerstorm.cnaf.infn.it \

v /etc/localtime:/etc/localtime:ro \

name $testsuite_name \

${REGISTRY_PREFIX}italiangrid/stormtestsuite

Daniele Andreotti - 20/02/2015 28/30

LOGOJenkins slave setup for docker

CoreOS VM provisioned by using OpenStack
cloud facilities

In CoreOS everything runs in containers.
There is not a dedicate package manager

Docker client on CoreOS (the host) tells the
server to download a prebuilt Jenkins slave
image from our local docker registry

A container is created on the host where
running the Jenkins slave:

● The Jenkins slave provides a ssh daemon to
accept incoming jobs from the Jenkins server

● Docker client on the slave talks to the docker
server which runs on the host

● The “containerized” slave runs jobs in turn as
containers directly on the host

Docker server

slave

container container

Docker client

1 2
3

4

SSH
daemon

Docker client

Daniele Andreotti - 20/02/2015 29/30

LOGONext steps

Understand how to integrate GPFS and Docker
➔ Access GPFS filesystem from containerized StoRM (now ext4)

Containerized each service independently
➔ At the present time all StoRM services run in the same

container

Daniele Andreotti - 20/02/2015 30/30

LOGO

Thanks

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

