## The second quantum revolution: quantum computation and information

Elisa Ercolessi DIFA
U. Bologna


## European Commission will launch $€ 1$ billion quantum technologies flagship

## Published on 17/05/2016

Günther H. Oettinger, Commissioner for the Digital Economy and Society outlined the Commission's plan to launch a $€ 1$ billion flagship initiative on quantum technology.

Speaking at the Quantum Europe Conference organised by The Dutch presidency of the EU, the European Commission and the QuTech center in Delft, the Commissioner outlined his
 objective to reinforce European scientific leadership and excellence in quantum research and in quantum technologies.

Representatives of academia and industry presented the Quantum Manifesto to Commissioner Oettinger and to the Dutch Minister of Economic Affairs Henk Kamp. One point they made clear was that quantum secure communication and computing will be a key part of future computing infrastructure. The quantum flagship will be a key part of the data and computing Infrastructure which underpins the European Cloud Initiative, as part of the Commission's strategy to digitise European industry.

## The Q-bit

- In Quantum Mechanics, the STATE of a system is described by a complex vector

$$
|\psi\rangle=\left(\begin{array}{c}
\psi_{1} \\
\psi_{2} \\
\vdots \\
\psi_{n} \\
\vdots
\end{array}\right), \psi_{j} \in \mathbb{C}
$$

- We can linearly combine vectors: SUPERPOSITION PRINCIPLE
- Familiar when dealing with forces, fields, waves ...
- Not familiar when dealing with systems of particles in classical mechanics
- This means that also

$$
|\psi\rangle=\alpha\left|\psi_{1}\right\rangle+\beta\left|\psi_{2}\right\rangle, \quad \forall \alpha, \beta \in \mathbb{C}
$$

is a possible state

- PROBABILISTIC INTERPRETATION

$$
\begin{gathered}
p_{1}=|\alpha|^{2} \\
p_{2}=|\beta|^{2}
\end{gathered}
$$

is the probability to find the system in the first/second state

- Example: double slit
experiment with single electrons

(" ... the heart of quantum mechanics ...", R. Feynman)
- Q-BIT = Two-Level System
- two independent states (basis) $|0\rangle,|1\rangle$
- general state

$$
|\psi\rangle=\alpha|0\rangle+\beta|1\rangle=\binom{\alpha}{\beta}
$$

- a measurement gives
$|0\rangle$ with probability $p_{1}=|\alpha|^{2},|1\rangle$ with probability $p_{2}=|\beta|^{2}$
- Bloch sphere: states are parametrized by two real numbers

$$
\alpha=\cos \theta, \quad \beta=e^{\imath \phi} \sin \theta
$$

- Much more information than a bit!



## - TWO Q-BITS

Computational basis

$$
\left|Q_{A} Q_{B}\right\rangle=|00\rangle,|10\rangle,|01\rangle,|11\rangle
$$

General state

$$
\begin{gathered}
\left|Q_{A} Q_{B}\right\rangle=\alpha_{00}|00\rangle+\alpha_{10}|10\rangle+\alpha_{01}|01\rangle+\alpha_{11}|11\rangle \\
\left|\alpha_{00}\right|^{2}+\left|\alpha_{10}\right|^{2}+\left|\alpha_{01}\right|^{2}+\left|\alpha_{11}\right|^{2}=1
\end{gathered}
$$

- Experimental realisations


# Photons: polarisation 

## annom



Electrons: spin

Atoms: isotopes of $\mathrm{Na}, \mathrm{Rb}, \ldots$


Superconducting Junctions

## Gates

- We shall distinguish between:
- MEASUREMENT: "disruptive" transformation -> collapse of the vector

$$
\left|\psi_{\text {in }}\right\rangle=\alpha|0\rangle+\beta|1\rangle \Rightarrow\left|\psi_{\text {out }}\right\rangle= \begin{cases}|0\rangle & , p_{0}=|\alpha|^{2} \\ |1\rangle & , p_{1}=|\beta|^{2}\end{cases}
$$



- EVOLUTION: transformation according to

Schroedinger equation -> (unitary) evolution operator

$$
\begin{gathered}
U(t), \quad U^{\dagger} U=U^{\dagger} U=\mathbb{I} \\
|\psi(t)\rangle=U(t)\left|\psi_{0}\right\rangle=\alpha(t)|0\rangle+\beta(t)|1\rangle \\
=\left(\begin{array}{ll}
u_{11} & u_{12} \\
u_{21} & u_{22}
\end{array}\right)\binom{\alpha}{\beta}
\end{gathered}
$$

$$
|\psi\rangle-\begin{gathered}
\text { Q-GATE } \\
\mathrm{U} \\
\end{gathered}
$$

N.B. quantum gates are unitary, bence reversible

- Examples of single q-bit gates

$$
\begin{aligned}
& -\mathrm{X}-\quad X=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { NOT }:\left\{\begin{array}{lll}
|0\rangle & \rightarrow & |1\rangle \\
|1\rangle & \rightarrow & |0\rangle
\end{array}\right. \\
& \mathbb{I}=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right) \\
& Y=\left(\begin{array}{cc}
0 & -\imath \\
\imath & 0
\end{array}\right) \\
& +\mathrm{Y} \\
& Z=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& -\mathrm{I} \\
& \text { Z } \\
& H=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& -\mathrm{H}-\quad \text { HADAMARD : }\left\{\begin{array}{lll}
|0\rangle & \rightarrow & \frac{1}{\sqrt{2}}(|0\rangle+|1\rangle \\
|1\rangle & \rightarrow & \frac{1}{\sqrt{2}}(|0\rangle-|1\rangle
\end{array}\right.
\end{aligned}
$$

- Examples of two-q-bit gates
$C N O T=\left(\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right) \quad C N O T:\left\{\begin{array}{lll}|00\rangle & \rightarrow & |00\rangle \\ |10\rangle & \rightarrow & |10\rangle \\ |01\rangle & \rightarrow & |10\rangle \\ |11\rangle & \rightarrow & |01\rangle\end{array}\right.$

- Universal Quantum Gates:

CNOT + single q-bit gates

- TOFFOLI GATE
for classical computation, which requires
NAND and FAN-OUT
not trivial because of


No-cloning Theorem: it is not possible to perform a unitary transformation which replicates an arbitrary initial state


## Algorithms

## - QUANTUM PARALLELISM

quantum parallelism allows quantum computers to evaluate a function $\mathrm{f}(\mathrm{x})$ for many different values of x simultaneously

$$
f:\{0,1\} \rightarrow\{0,1\}
$$



- At the basis of many algorithms
- extension to n q-bits: $\sum_{x}|x, f(x)\rangle$
- Deutsch: calculates $f(0) \oplus f(1)$ in only one iteration
- Deutsch-Jozsa: evaluate whether a function is constant or balanced in just one iteration
- Quantum Fourier transform: exponential speed-up
- Search problems (Grover): quadratic speed-up
- Factorisation (Shor): exponential speed-up
- Computational Complexity: from NP to P problems


## Entanglement

- BELL STATES: different basis
from computational

$$
\begin{aligned}
\left|\chi_{ \pm}\right\rangle & =\frac{|00\rangle \pm|11\rangle}{\sqrt{2}} \\
\left|\psi_{ \pm}\right\rangle & =\frac{|01\rangle \pm|10\rangle}{\sqrt{2}}
\end{aligned}
$$

- Consider the following situation: with $\left|\psi_{+}\right\rangle$
- The first q-bit is sent to Alice, the second to Bob.
- If Alice makes a measurements she finds her q-bit in the $|0>| 1>$, state with $50 \%$ probability: the state of Alice's q -bit is not defined a-priori.
The same holds for Bob's q-bit.
- Suppose Alice measures 0 : this means that the global vector has collapsed to $\quad\left|\psi_{\text {fin }}\right\rangle=|01\rangle$
- If Bob makes a measurements now, he finds that his qbit is $100 \%$ in the $11>$ state!

" ... that spooky action at a distance ..."
(A. Einstein)
- Quantum Correlations (ENTANGLEMENT) exist between the two q-bits
- Source of a long-standing debate
- Einstein vs. Bohr
- Einstein-Podolsky-Rosen paradox

- Hidden variables
- Bell's theorem
- Aspect's experiments


## Entanglement as a resource

## "Quantum imaging with undetected photons"

Gabriela Barreto Lemos, Victoria Borish, Garrett D. Cole, Sven Ramelow, Radek Lapkiewicz \& Anton Zeilinger Nature 512, 409-412 (28 August 2014)

- CRYPTOGRAPHY :
- Public key distributions:
efficiency based on the fact that to use the key one has to know how to factorise a huge number
for classical computers this is a NP problem, but for quantum computers this is a P problem
- Private key distributions: Quantum Key Distribution

Alice $\&$ Bob must share the key and this can be eavesdropped and stolen

Quantum protocols to share a private key between A and B


Security can be proven mathematically under the assumption that communication over public channels happens with an error rate lower than a given threshold

Basic idea: if Eve succeeds in eavesdropping the key, the system is so much disturbed that Alice and Bob know it has been stolen

## - TELEPORTATION:

exact reconstruction of the unknow state of a q-bit at a distance (from Alice to Bob)

- it can be done thanks to assistance of a couple of entangled q-bits
- at the end of the protocol, when Bob has reconstructed the state, Alice's q-bit state is lost



## Where are we?

- CRYPTOGRAPHY : Quantum Key Distribution over optical fibres
- First experiments: 40 km
- In 2004: first bank account transfer
- As of 2015: 350 km
- Commercial: ID Quantique (Geneva), MagiQ Technologies (New York), QuintessenceLabs (Australia) and SeQureNet (Paris).
- Active research programmes: Toshiba, HP, IBM, Mitsubishi, NEC and NTT.
- TELEPORTATION: mainly with photons
- First experiments: few meters (LENS in Florence)
- In 2003: first teleportation
- As of 2015: 100 km (NIST)

- Developments: ... Multiple degrees of freedom
... Larger systems (atoms, cold gases,...)



## - QUANTUM COMPUTERS:



+ Quantum gate arrays
${ }^{+}$Adiabatic quantum computers
d

Code surfice
Hole


+ Topological quantum computers
- Possible implementations:
- photons
- trapped atoms/ions
- quantum dots
- bose-einstein condensates
- superconducting junctions
- NMR
- cavity QED
- Several small implementation for specific problems: such as Shor's algorithm to factorise 15 on a 4 q-bit NMR computer in 2001, in 2012 factorisation of 21
- Other interesting news:
- D-Wave Systems (USA): in sold 2010 the first 128 qbit processor, in 2012 the 512 q-bit processor, in 2015 the $1000+2 \mathrm{X}$ system

- Large debate between D-Wave \& IBM over efficiency and actual use of quantum algorithms
- Cost: \$ 15 million, bought by NASA \& Google in 2015
- Speed-up: december 2015 from Google Lab

- QC lab in the world:

NASA
Google
Apple

Bell Labs
Microsoft
D-Wave

- IBM clouд quantum computer: 5 q-bits chip



## What else?

- QUANTUM SIMULATORS:

Simulating quantum mechanics is known to be a difficult computational problem, especially when dealing with large systems (R. Feynman).

This difficulty may be overcome by using some controllable quantum system to study another less controllable or accessible quantum system.

Applications to the study of many problems in, e.g., condensed-matter physics, high-energy physics, atomic physics, quantum chemistry, and cosmology.

## Real-time dynamics of lattice gauge theories with a few-qubit quantum computer

Esteban A. Martinez, Christine A. Muschik, Philipp Schindler, Daniel Nigg, Alexander Erhard, Markus Heyl, Philipp Hauke, Marcello Dalmonte, Thomas Monz, Peter Zoller \& Rainer Blatt

Nature 534, 516-519 (23 June 2016)



## Textbooks:

J. Preskill - Quantum Computation http://www.theory.caltech.edu/people/preskill/ph229/
M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information, Cambridge, 2011

