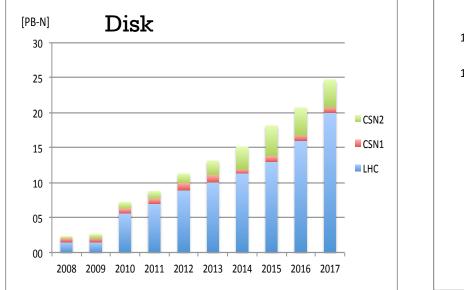
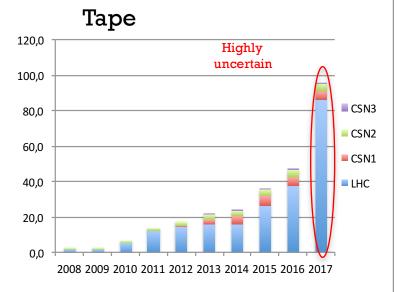


Storage evolution at CNAF

Vladimir Sapunenko, CNAF

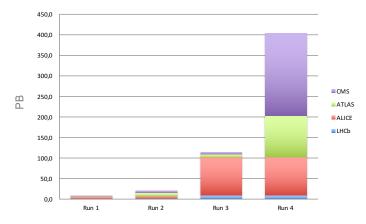
Introduction

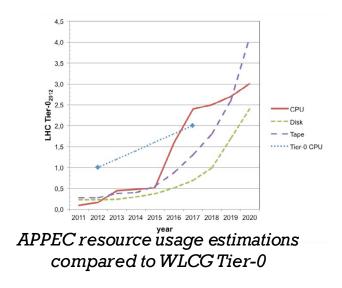

■ INFN Tier-1 is not only WLCG Tier-1


- We host CPU and storage resources, both disk (29%) and tape (22%) for more than 25 experiments beside WLCG ones
- Mainly Astro-particle collaborations
- Non definitive figures for LHC Run2 timescale
 - Taking into account not only LHC
 - Even more uncertain scenario for 2020+
- Change of mission for a Tier-1 center?
 - E.g. More focus on DM and fewer importance for computing?
- Does our current storage solution (GEMSS) fit with any requirements?
 - Several computing models (if any!) to cope with
 - Different storage usage, data access pattern, protocols....
 - Other constrains (budget, space,) can also condition the evolution of our storage system

On-line and Near-line Storage grow trends at CNAF

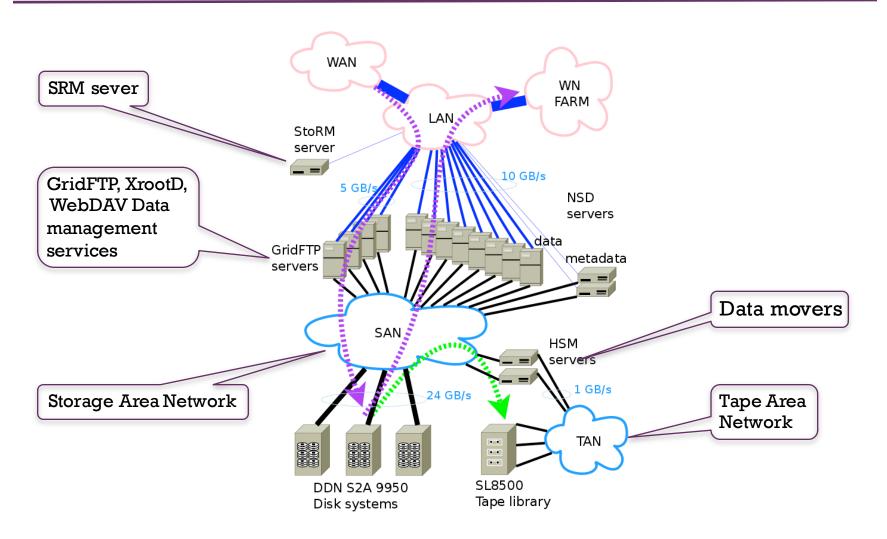
(LHC Run2 time-scale)




Long(er) term

- Difficult to extrapolate figures for CNAF
- Anyway, huge increase of resources foreseen and our Data Center will be unlikely able to support it (budget issues not considered)
 - Remote extension could have effect on storage model
 - First experience to be gained with HNSciCloud, Bari and Aruba

WLCG raw data volumes estimations per year of data taking (to be added: ESD, AOD)

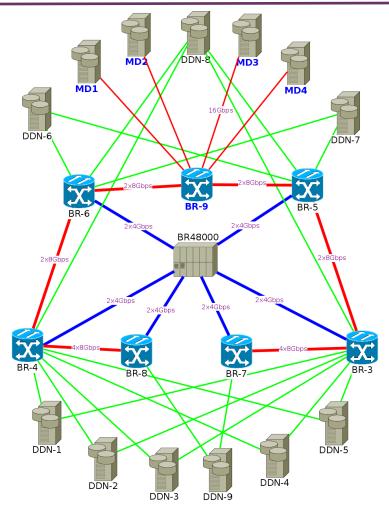


Operational conditions

- 4 LHC and more than 25 other HEP experiments
- ~18 PB of data online and 22 PB near-line (tapes)
- Accessed from ~15K concurrent processes
- Aggregated data bandwidth to storage ~ 90 GB/s
 - Actually observed:
 - on LAN ~ 20 GB/s (16 GB/s from 1 single experiment)
 - and WAN, ~ 2 GB/s (saturating 2x10Gbit uplinks)
- Continues configuration changes (new installations, data migrations)

Data flow in a single experiment cluster

Data Center Storage model (current state)



- Fiber Channel SAN (and IB FDR is under deployment)
- Few but Big storage systems O(PB)
- Dedicated 10 Gbps I/O servers for big Exps
 - Moving to 4x10 Gbps servers
- Dedicated 10 Gbps GridFTP servers for big Exps
- Dedicated HSM nodes for big Exps
- Direct access via SAN from GridFTP, XrootD, WebDAV, servers to the storage
- Direct access via SAN from HSM nodes to the storage
- Targeted for high performance

Storage Area Network

- Single fabric
 - l director (core switch)
 - 7 edge switches
- Different technologies:
 - Core FC4
 - Edge FC8
 - Latest FC16
 - Soon IB FDR
- Total number FC of ports: 1360
- Dual link from every HBA to SAN disks (via separate edge switches)
- All tape drives connected to the core

Data Center Storage model (current state 2)

- GPFS as POSIX interface and back-end for all data management services provides
 - Flexibility in management
 - Performance
 - Failure resilience
- Dedicated clusters for big experiments
 - Management and Failure domain isolation
- Using dedicated disks (SAS) and servers to store and handle file system metadata
 - Data (I/O) servers can perform metadata handling in case of metadata servers failure

GPFS = Software Defined Storage

"Why you are using GPFS? It's boring, it just works..."

- GPFS is actively evolving
 - 3 Major releases in last three years
 - Incorporated New architectural approaches
 - Hadoop-like: SNC (Shared Nothing Cluster)
 - RAIN-like: Native RAID (usnig JBODs)
 - Geographically distributed: AFM (with local cache, AFS-like)
 - Local read-only cache on clients
 - Integration with OpenStack
- IBM GPFS and TSM operational costs
 - TSM ~50K€/year (including CNAF backup service)
 - GPFS ~50K€/year (for ~8 INFN sites)

Disk Performance offered and demanded

Ехр	On-line usable (disk) storage, TB	Number of I/O servers (EA, Gbps)	TB(net)/ I/O server	Front-end (LAN) Bandwidth/T B, MB/s	Back-end (Storage) bandwidth /TB, MB/s	Max sustained bandwdth used/TB, MB/s
ATLAS	3500	8 (x10)	437	2.85	4.7	2.0
ALICE	1730	6 (x10)	288	4.33	3.1	2.9
CMS	3380	16 (x10)	211	5.91	4.7	4.7
LHCb	2520	12 (x10)	210	5.95	4.7	2.0
AMS	1540	8 (x10)	192	6.49	6.8	6.8
GR2	1250	6 (x10)	208	6.0	4.4	1.3
Virgo	428	16(x1)	26	4.6	6.2	1.8
ARGO	320	12(x1)	26	4.6	6.2	2.5

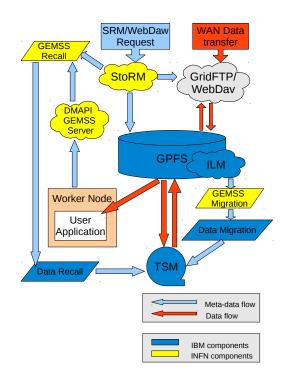
- TB (usable) per I/O server (LAN, WAN)
- LAN bandwidth (MB/s per TB)
- Storage bandwidth (MB/s per TB)

Technology caveats

- Disk capacity increasing much faster than performance
 - Sequential access rate is about 150MB/s for 4TB SATA disks
 - real sustained rate even lower (30-60MB/s)
 - Rebuild times for 4TB disks is about 50 hours
- More space per spindle + more CPU cores \rightarrow IO congestion
 - to keep up with performance demand we need to deploy faster Disk Tier or Cache
 - Preliminary tests with SSD array demonstrated great improvements

Disk storage HW evolution (as we see it)

- There are no alternatives to enterprise-graded HDDs;
- 8 TB He-filled drives are being installed, expected higher performance in streaming I/O, up to 200 MB/s (as on data sheet) 10 TB He-filled disks already available in the market;
- No strong objections to use "small bricks", BUT
 - only data replication can provide acceptable level of protection from entire system failure
- Advantages of enterprise-graded storage systems:
 - lower efforts in management;
 - better support and problem resolution;
 - lower chance of entire system failure;


Disk Storage software evolution

- use of POSIX FS (as frequently requested and preferred by users);
- distributed RAIDs to minimize recovery time from hdd failure or use of mirroring (RAID10) with "Archival" hdd - continuous availability + serviceability
- use of Parallel FS to provide requested bandwidth;
- use of tiered storage requiring deployment of not negligible amount of expensive High Performance disks and implementation of HSM movers between slow and fast disks
 - can be done with TSM or directly with GPFS) and "pre-staging" of data to be processed ("transparent recall" will not work for I/O intensive jobs

Mass Storage System

- HSM: GEMSS
 - Integration of IBM GPFS and TSM + specific customization and the SRM interface StoRM
 - Very good performance and efficiency

- Disk-centric system with five building blocks
 - 1. GPFS: disk-storage software infrastructure
 - 2. TSM: tape management system
 - 3. StoRM: SRM service
 - 4. TSM-GPFS interface
 - 5. Globus GridFTP: WAN data transfers
- SRM is not essential currently used only to "BringOnLine", could be replaced by direct WebDav/HTTP calls
- DMAPI Server Used to intercept READ events via GPFS DMAPI and re-order recalls according to the files position on tape
- Globus GridFTP or Storm WebDav service used for WAN data transfers

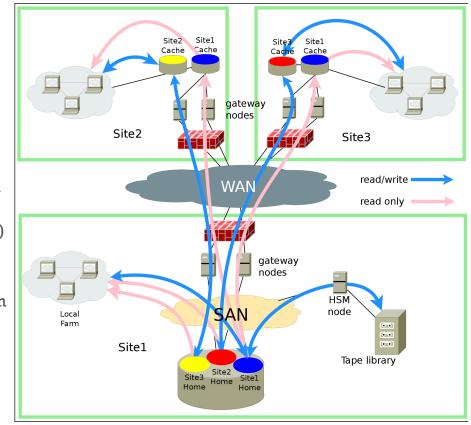
- There is no any Open Source High Performance Storage solutions with HSM even on a horizon (apart from dCache)
- HPSS is targeted for performance, very expensive and VERY complicated in use
- GEMSS seems to be optimal solution as for expenses and for management efforts

Exploring new technologies: Dynamic Disk Pools (Dell)

- Recent storage systems from Dell
- Distributed RAID 8+2
- Pros:
 - Fast recovery (15 min respect to 50 hours)

Cont:

 Slightly lower performance (more computations needed)


RAID configuration	RAID6 (8+2)	DDP (1x180)
N. of pools	18	1
N. disks per pool	10	180
% used for parity	20	20
N. of reserved capacity disks	0	6
N. of LUNs	18	18
Usable space, TB	576	556
Critical conditions (N. Of failed disks)	2 in 1 pool	2 in 1 pool
Recovery Time from critical, hours	50 (rebuild of 1 disk)	<0.3 (estimate)

Remote data access via GPFS AFM

Cache basics

- Asynchronous updates
- Writes can continue when the WAN is unavailable
- TCP/IP for communication between sites (NFS or GPFS protocol)
- Two sides
 - Home where the information lives
 - Cache
 - Data written to the cache is copied back to home as quickly as possible
 - Data is copied to the cache when requested
- Communication is done using NFS (v3 and v4)
- GPFS has it's own NFSv3 client
 - Automatic recovery in case of a communication failure
 - Parallel data transfers (even for a single file)
 - Transfers extended attributes and ACL's

Use case of AMS: CNAF(Bologna)-ASI(Rome) remote data processing...

- Home site location: Bologna
- Remote site location: Rome
- Distance between sites: ~400km
- RTT: 23 ms
- Bandwidth: 100 Mbps
- Home FS size: 1.1 PB
- Cache size: 10 TB

- A DB (based on ROOT TTree objects) with tags of events that have passed certain preselection requirements has been locally created.
- Each data processing job queries the preselection DB to look for the tags of interesting events, in order to access them (and only them) from a remote file.
- AFM Prefetch Threshold has been tuned to manage 10 GB files accessed randomly and sequentially.
- The final configuration allows us to process the same file remotely paying only a fraction of 15% in execution time.

... and Bari/RECAS

- Tests on going for remote extension of Tier-1 in Bari/RECAS
- 20 kHS06 available
- VPN (20 Gbps) configured
- AFM cache set-up completed
 - ~200 TB and 2 disk servers, 20 Gbps interconnection
- Transparent access to tape from Bari needs to be understood
 - First step: data on tape to be accessed directly from CNAF

Tommaso Boccali, Luca dell'Agnello

16/09/2015

The Aruba case

- Aruba is one of the biggest commercial cloud provider in Italy
- No cache present (yet) in Aruba excepting for LSF and Exp software
- Direct remote access to storage via xrootd
 - Viable only for few experiments (e.g. CMS, Alice...)
- Stageout to CNAF/Storm

OUR DATA CENTERS

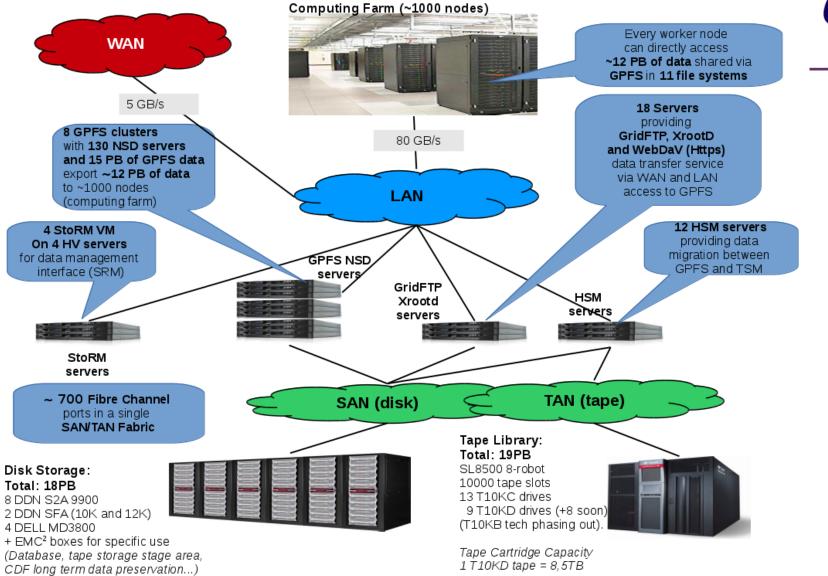
Click on the icon of the data center to see its features:

- http/WebDAV implemented as side service of Storm, can be used as independent service
- Easy to use interface, i.e. dropbox like or Tl_as_a_usb_disk_attached_to_my_laptop, is a common request from smaller VOs.
 - We are experimenting with OwnCloud and GlobusOnline but if storm will be able to provide this kind of access if would be a great added value, maybe integrating OwnCloud itself.

Conclusions

- SAN based solutions + clustered file system are still providing better performance and availability at lower costs
- DAS based solutions (EOS, dCache, Gluster) to ensure data availability still require data replication → doubling number of servers, raw storage space, footprint and power consumption
- Implementation of Erasure coding in RAIN system could overturn this situation
- Well defined metrics will help to make the choice

Backup slides

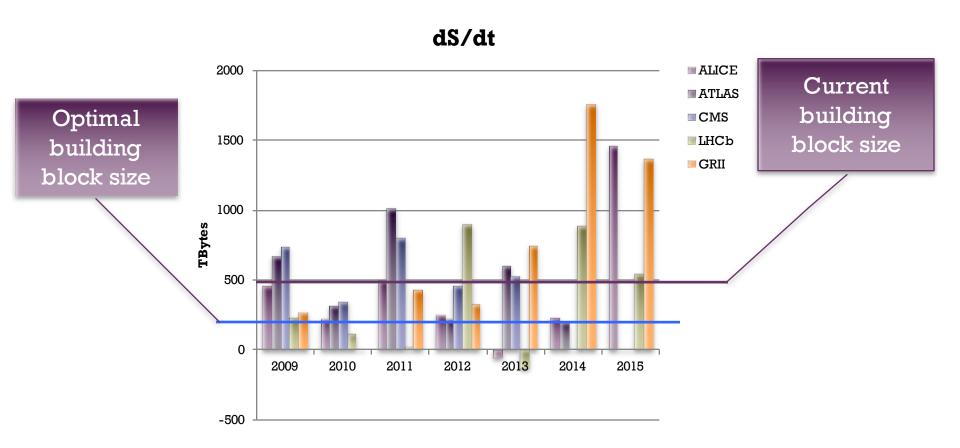


Metrics to confront PB-range storage solutions

- Capacity to Bandwidth ratio
 - TB (usable) per I/O server (LAN, WAN)
 - LAN bandwidth (MB/s per TB)
 - Storage bandwidth (MB/s per TB)
- Building block size
 - capacity, footprint (rack units), network ports
- Power consumption
 - KW/TB (including all components: disks, servers, network)
- Price (TCO)
 - KEuro/TB (including all components: disks, controllers, servers, network, software, man power)

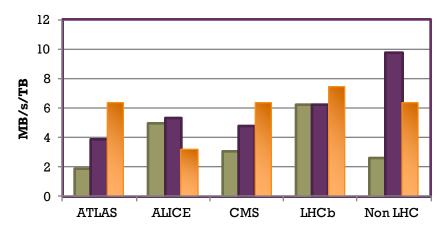
Flash back (to 2013 review)

• CERN EOS in 2013:


- The concept: use of single disks (JBODs) without local RAIDs
- Reed-Solomon error correction is ready and will be available in next release (in a month time) - still is not used in prod at CERN!
- in 2015 we have Reed-Solomon (erasure) coding in IBM's GSS (GPFS based) systems and in Dell MD3800 (last storage acquisition)
 - Dell MD3800 in production for 6 months
 - Working with IBM to verify GSS compatibility with our environment

MSS: Hardware

- TSM server core of MSS system
 - Current version does not support redundant server configuration
 - Using "warm" spare server with shared storage
 - Observed HW limitation of current server during re-pack and data migration
 - Upgraded server HW to FC16 HBA pushing throughput to 1.6 GB/s
- Tape libray: Oracle-StorageTek SL8500
 - 21 PB total space used
 - 10000 slots
 - 4514 T10000D tapes used, 1622 free
 - 17 tape drives
 - Max capacity with tapes "D" ~8,5 PB
 - Expected demand by 2017 ~ 100 PB
 - Considering installation of second library.

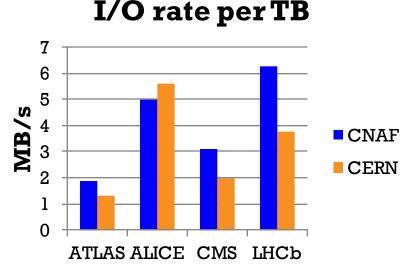

Delta in storage space allocated respect to a previous year

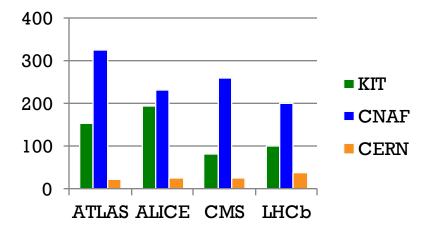
Vladimir.Sapunenko@cnaf.infn.it

INFN Tierl

Network bandwidth used Network bandwidth max

Storage bandwidth max


Network and storage bandwidth available and used by experiments for every TB of storage.


2013 Tender: 1.9 PB (usable) for ~306 €/TB (included servers and FC switches, excluded VAT)

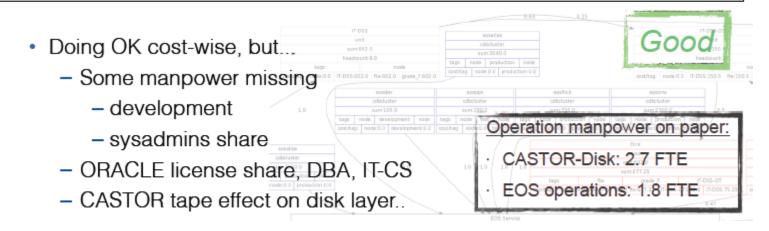
Confronting with other sites

- TB (usable) per server for CNAF, KIT and CERN (EOS only)
 - CERN: Raw/usable=2
 - KIT, CNAF: raw/usable=1.25

- I/O rate on LAN in MB/s normalized to storage volume (in TB), max sustained
 - Data from LeMon (CERN, CNAF), X. Mol talk at GDB 13/03/13 (KIT)

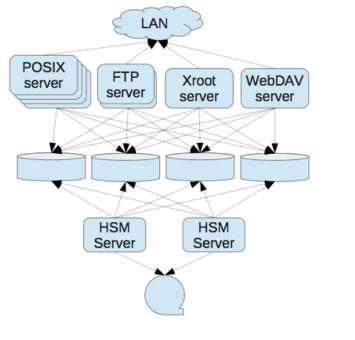
TB per I/O server

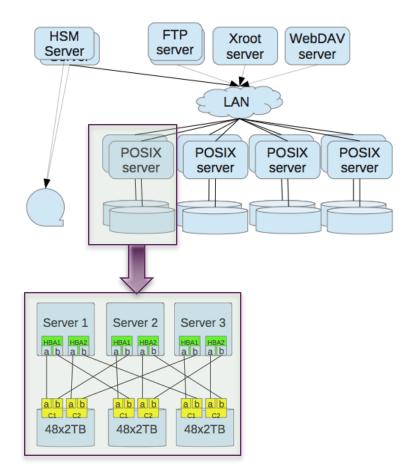
Vladimir.Sapunenko@cnaf.infn.it


Storage operations costs at CERN

assumptions on:

- prices for HW @ 3years
- electricity cost
- disk operation manpower


	CASTOR	EOS
HW+ electricity cost	16.5 CHF/1TBMonth	13.0 CHF/1TBMonth
operation manpower cost	2.7 CHF/1TBMonth	1.3 CHF/1TBMonth
partial "running" cost	19.2 CHF/1TBMonth	14.3 CHF/1TBMonth


Amazon S3: "reduced redundancy", Europe, 30PB: 42US\$ / 1TBmonth (no Network, I/O ops)

SAN vs. DAS

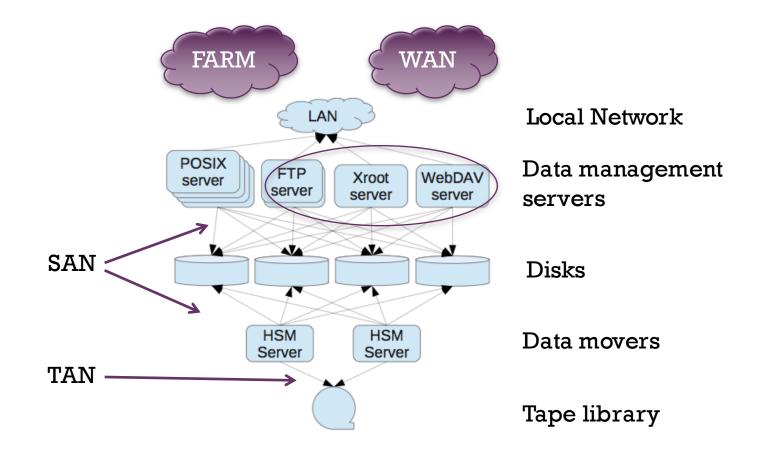
Advantages of SAN solutions

Redundancy

■ With a Shared disk file system more than one server can access one storage device → protection against server failure, possibility to take server off-line for maintenance without compromising access to data

Scalability

- Adding more storage to a server does not require HW modification on server side
- Dedicated network for server-storage communication
 - Servers with different roles (I/O servers, data movers, HSM nodes) can work independently
- Centralized management


Drawbacks of SAN solutions

Scalability

- Building blocks are of order of PB is huge respect to requested (yearly) increment for single experiments
- If fully loaded, expansion of a few % require big expenses
- If not fully loaded, being highly optimized, expansion is very challenging
- Performance problem in a single component can affects the whole system ("slow disk" problem)
- Flexibility
 - Considerable efforts to preserve performance after small configuration changes
 - To move some TB from one exp to another require some intensive data re-balancing which can affect performance of both systems

General architecture view

