

INDIGO - DataCloud

RIA-653549

INDIGO-DataCloud plans for storage

Giacinto Donvito – INFN-Bari On behalf of INDIGO Collaboration

INDIGO: The consortium

- 26 partners from 11 countries
- The exagon contains the partners involved in development activities
- 11M€ of total founding by EC
- 4 Big private companies

From the **EC Evaluation** Summary Report: "The consortium is of exceptional quality, and complementary, and with good relevant experience and skills"

Scientific Computational Portal "as a Service"

INDIGO-DataCloud RIA-653549

Software as a Service Use Case

Example: R-Studio

- R-Studio Server provides a browser-based interface (RStudio IDE) to a version of R running on a remote Linux server.
 - How to deploy it using INDIGO?

INDIGO overall architecture

Color codes: Yellow: implementation based on already available solution to be improved/changed;

Orange: Completely new services to be implemented

Simplified architecture

INDIGO-DataCloud RIA-653549

WP4: IaaS Platform Development

- Virtualized Computing Resources
 - Full Container support for Cloud Management Infrastructures and Batch
 - Container support for special hardware (Infiniband, GP-GPU's)
 - Spot Instances
 - Fair Share Scheduling
- Virtualized Storage Resources
 - QoS and Data Life Cycle for storage (storage management)
 - Access to data by meta data instead of name space
 - Dual access to data (Object Store versus POSIX file name space)
 - Identity Harmonization for storage
- Virtualized Network Resources
 - Orchestrating local and federated network resources
 - "Software Defined Network" evaluation Services and Appliances for for virtual networks

INDIGO - DataClou

The QoS properties

- Is there a sufficiently complete set of properties ?
- In WCLG we only had two properties:
 - Access Latency
 - Retention policy
- That was already too much for most people
- Talking to Reagan Moore (IRODS) at the Paris RDA meeting:
 - He is suggesting about 200 properties
 - That might be a bit over the top for a start

Property Quantization

Properties zoo of existing systems

Amazon	S3		Glacier
Google	Standard	Durable Reduces Availability	Nearline
HPSS/GPSS	Corresponds	to the HPSS Classes	s (customizable)
dCache	Resilient	disk+tape	TAPE

What are canonical properties ? INDIGO - DataCloud Class C Class A Class B 121 sting amb Access Latency 0 min ms 0.99999999 > 0.9999 Durability Media Tape Replicas 2 Tape Disk

Canonical Storage Properties

Customer View

- The canonical view only helps to describe the system on the technical level.
- It's not very helpful for the storage user.
- We need to introduce more convenient **QoS views**.

Ambiguous, non canonical, dependent, combined properties.

Examples :

Low latency & lowest price High throughput & super durable Large volume & cheap & archive

Translation and discovery

Federated Systems

- The federated system provides additional QoS properties.
 - Number of copies, not in the same location
 - Minimum geographic distance for disaster cases. (fire, earthquakes)
 - Legal implications: Privacy laws
- Federated system might need more higher level services attached:
 - FTS or Globus Online to create replicas
 - DynaFed to federate distributed resources.

More problems to solve

- How does the client provide the storage class to the storage system ?
 - Bucket
 - Directory
 - Additional argument in WebDAV, FTP etc
- The system only provides the class, it doesn't 'promise' the space.
 - Do we need a space reservation protocol?
 - Is reservation required in systems with unlimited space (Clouds)?
- Do we allow to change the storage class, assuming the system will do the necessary data movements ?
 - This is of course just a storage system property. Amazon and Goolge don't
 - dCache and HPSS do.

Next step: Data Life Cycle

- Data Life Cycle is just the time dependent change of
 - Storage Quality of Service
 - Ownership and Access Control (PI Owned, no access, Site Owned, Public access)
 - Payment model : Pay as you go ; Pay in advance for rest of lifetime.
 - Maybe other things

Current status (definitions)

- Introduced at the research data alliance (RDA) in Paris
- Lots of interested communities and sites.
- Creating of interest group in progress.
 - Name still in heavy discussion
- 10 Committed members
- Will be followed up on in Tokyo end of Feb 2016

Current status (technically)

- Canonical Information providers are being build
 - dCache (internal)
 - Common external system for GPFS/HPSS
 - CEPH
 - StoRM/GEMSS
 - Cloud (Amazon and Google)
- Information Provider Protocol in discussion (candidate : CDMI)

laaS: Metadata-driven storage

IaaS: laying hierarchical storage

Virtual

Identity and group-membership

SAML, OpenID-Connect, X.509, ...

Harmonise user identities:

User is the same person, irrespective of how they authenticate

Support group-membership:

Membership can be used for authorisation decisions.

Support **third-party** group membership:

VOMS-style: where membership not asserted by authentication service.

INDIGO - DataClou

WP5: PaaS Platform Development

- PaaS layer is provided by WP5
- It is realized by means of a high-available and scalable µServices cluster
 - Hosted by Kubernetes
- It is able to provide two main approach:
 - High-Level automatized laaS
 - Real PaaS services and application execution

Conclusions

- First official release will be: end of July next year
- We will start make available some services as soon as they are ready enough to be tested
- All the changes on the already available projects, will be pushed back to the official releases.
 - OpenStack, OpenNebula, dCache, Onedata, Mesos, Accounting, QoS/SLA, etc

https://www.indigo-datacloud.eu

Questions?

Giacinto DONVITO

giacinto.donvito@ba.infn.it

Back-up Slides

INDIGO Topic of interest

- Since the very beginning we identified key issues with both Grid and Cloud technologies that prevented scientific communities an easy and optimal exploitation of data and compute resources.
- We therefore decided to propose the development of a software platform centered around two of the EINFRA-1-2014 pillars:
 - Large scale virtualization of data/compute center resources. This became the focus of INDIGO WP4.
 - Development and adoption of a standards-based computing platform (with an open software stack). This became the focus of INDIGO WP5.

How do we see distributed computing in the future

- Ease of access and use for small and big collaborations alike.
- 2. Software and economic sustainability.
- 3. Robustness (no single points of failure).
- 4. Modular, scalable architecture.
- Open source software, vendor independence, hybrid infrastructures.

Users communities

SIMPLIFIED IMPACT TABLE SELECTED OBJECTIVES versus REQUESTS/ POTENTIAL IMPACT FOR COMMUNITIES O1: Development of the INDIGO Platform based on open software without restrictions on the e-Infrastructure	Life Sciences	Physical Sciences & Astronomy	Social Sciences & Humanities	Environmental Sciences
Research Communities & Initiatives , including ESFRIs	ELIXIR INSTRUCT/ WeNMR EuroBiolmaging	CTA LBT WLCG	DARIAH DCH-RP	EMSO LIFEWATCH ENES
Examples of Applications	HADDOCK GROMACS AMBER GALAXY	MIDAS, IRAF, IDL, Geant4 ROOT/PROOF Geant4	Fedora Digital Libraries	Delft3D R-Studio TRUFA MATLAB
Design and development of a Platform providing advanced users and community developers a powerful and modern environment for development work. This includes programming and scripting tools, and composition of custom applications and software deployment	RELEVANT	CRITICAL	RELEVANT	CRITICAL
Developing a framework to enable the transparent execution on remote e-infrastructures of existing popular applications like MATLAB / OCTAVE, ROOT, MATHEMATICA, or R-STUDIO.	RELEVANT	CRITICAL	MINOR	CRITICAL
Provide the services and tools needed to enable a secure composition of services from multiple providers in support of scientific applications.	CRITICAL	CRITICAL	RELEVANT	RELEVANT
Develop and implement a solution that is able to deploy in a transparent and powerful way both services and applications in a distributed and heterogeneous environment made by several different infrastructures (EGI Grid and Federated Cloud, IaaS Cloud, Helix Nebula, HPC clusters)	CRITICAL	RELEVANT	MINOR	RELEVANT
Develop the capability in the PaaS to provide unified data access despite geographical location of data, including APIs access, based on existing standards, or virtually mount like a POSIX device to worker node, cloud virtual machines, personal computer etc.	CRITICAL	RELEVANT	CRITICAL	RELEVANT

INDIGO WPs

INDIGO - DataCloud

INDIGO approach

- Based on Open Source solutions
- widely **supported** by big communities
- whenever possible exploit general solutions instead of specific tools/services
 - or put effort in increasing the generality of tools developed in a given community
 - this will be important for **sustainability** of the architecture
- ensure that the framework offered to final users, as well as to developers, will have a **low learning curve**
 - existing software suites like ROOT, OCTAVE/MATLAB, MATHEMATICA or R-STUDIO, will be supported and offered in a transparent way